627 research outputs found

    Interpretation of neutrino flux limits from neutrino telescopes on the Hillas plot

    Full text link
    We discuss the interplay between spectral shape and detector response beyond a simple E^-2 neutrino flux at neutrino telescopes, at the example of time-integrated point source searches using IceCube-40 data. We use a self-consistent model for the neutrino production, in which protons interact with synchrotron photons from co-accelerated electrons, and we fully take into account the relevant pion and kaon production modes, the flavor composition at the source, flavor mixing, and magnetic field effects on the secondaries (pions, muon, and kaons). Since some of the model parameters can be related to the Hillas parameters R (size of the acceleration region) and B (magnetic field), we relate the detector response to the Hillas plane. In order to compare the response to different spectral shapes, we use the energy flux density as a measure for the pion production efficiency times luminosity of the source. We demonstrate that IceCube has a very good reach in this quantity for AGN nuclei and jets for all source declinations, while the spectra of sources with strong magnetic fields are found outside the optimal reach. We also demonstrate where neutrinos from kaon decays and muon tracks from tau decays can be relevant for the detector response. Finally, we point out the complementarity between IceCube and other experiments sensitive to high-energy neutrinos, at the example of 2004-2008 Earth-skimming neutrino data from Auger. We illustrate that Auger, in principle, is better sensitive to the parameter region in the Hillas plane from which the highest-energetic cosmic rays may be expected in this model.Comment: 28 pages, 10 figures. Substantial clarifications, such as on definition of "sensitivity" and model descriptio

    Geomagnetic effects on cosmic ray propagation for different conditions

    Get PDF
    The geomagnetic field (B geo) sets a lower cutoff rigidity (R c) to the entry of cosmic particles to Earth which depends on the geomagnetic activity. From numerical simulations of the trajectory of a proton (performed with the MAGCOS code) in the B geo, we use backtracking to analyze particles arriving at the Auger Observatory location. We determine the asymptotic trajectories and the values of R c in different incidence directions. Simulations were done using several models of B geo that emulate different geomagnetic conditions. © 2012 International Astronomical Union

    Signatures of cosmic tau-neutrinos

    Full text link
    The importance and signatures of cosmic tau--(anti)neutrinos have been studied for upward-- and downward--going μ−+μ+\mu^-+\mu^+ and hadronic shower event rates relevant for present and future underground water or ice detectors, utilizing the unique and reliable ultrasmall--xx predictions of the dynamical (radiative) parton model. The upward--going μ−+μ+\mu^- +\mu^+ event rates calculated just from cosmic νμ+νˉμ\nu_{\mu}+\bar{\nu}_{\mu} fluxes are sizeably enhanced by taking into account cosmic ντ+νˉτ\nu_{\tau}+ \bar{\nu}_{\tau} fluxes and their associated τ−+τ+\tau^- +\tau^+ fluxes as well. The coupled transport equations for the upward--going ν(−)τ\stackrel{(-)}{\nu}_{\tau} flux traversing the Earth imply an enhancement of the attenuated and regenerated ν(−)τ\stackrel{(-)}{\nu}_{\tau} flux typically around 104−10510^4-10^5 GeV with respect to the initial cosmic flux. This enhancement turns out to be smaller than obtained so far, in particular for flatter initial cosmic fluxes behaving like Eν−1E_{\nu}^{-1}. Downward--going μ−+μ+\mu^- +\mu^+ events and in particular the background--free and unique hadronic `double bang' and `lollipop' events allow to test downward--going cosmic ντ+νˉτ\nu_{\tau} +\bar{\nu}_{\tau} fluxes up to about 10910^9 GeV.Comment: 32 pages, 6 figures; Added reference

    Search for a simultaneous signal from small transient events in the Pierre Auger Observatory and the Tupi muon telescopes

    Full text link
    We present results of a search for a possible signal from small scale solar transient events (such as flares and interplanetary shocks) as well as possible counterparts to Gamma-Ray Burst (GRB) observed simultaneously by the Tupi muon telescope Niteroi-Brazil, 22.90S, 43.20W, 3 m above sea level) and the Pierre Auger Observatory surface detectors (Malargue-Argentina, 69.30S, 35.30W, altitude 1400 m). Both cosmic ray experiments are located inside the South Atlantic Anomaly (SAA) region. Our analysis of several examples shows similarities in the behavior of the counting rate of low energy (above 100 MeV) particles in association with the solar activity (solar flares and interplanetary shocks). We also report an observation by the Tupi experiment of the enhancement of muons at ground level with a significance higher than 8 sigma in the 1-sec binning counting rate (raw data) in close time coincidence (T-184 sec) with the Swift-BAT GRB110928B (trigger=504307). The GRB 110928B coordinates are in the field of view of the vertical Tupi telescope, and the burst was close to the MAXI source J1836-194. The 5-min muon counting rate in the vertical Tupi telescope as well as publicly available data from Auger (15 minutes averages of the scaler rates) show small peaks above the background fluctuations at the time following the Swift-BAT GRB 110928B trigger. In accordance with the long duration trigger, this signal can possibly suggest a long GRB, with a precursor narrow peak at T-184 sec.Comment: 9 pages, 13 figure

    Tau Neutrinos in the Auger Observatory : A New Window to UHECR Sources

    Get PDF
    The cosmic ray spectrum has been shown to extend well beyond 10^{20}eV. With nearly 20 events observed in the last 40 years, it is now established that particles are accelerated or produced in the universe with energies near 10^{21}eV. In all production models neutrinos and photons are part of the cosmic ray flux. In acceleration models (bottom-up models), they are produced as secondaries of the possible interactions of the accelerated charged particle; in direct production models (top-down models) they are a dominant fraction of the decay chain. In addition, hadrons above the GZK threshold energy will also produce, along their path in the Universe, neutrinos and photons as secondaries of the pion photo-production processes. Therefore, photons and neutrinos are very distinctive signatures of the nature and distribution of the potential sources of ultra high energy cosmic rays. In the following we describe the tau neutrino detection and identification capabilities of the Auger observatory. We show that in the range 3x10^{17}-3x10^{20}eV the Auger effective apperture reaches a few tenths of km^2.sr, making the observatory sensitive to fluxes as low as a few tau neutrinos per km^2.sr.year. In the hypothesis of nu_mu nu_tau oscillations with full mixing, this sensitivity allows to probe the GZK cutoff as well as to provide model independent constraints on the mechanisms of production of ultra high energy cosmic rays.Comment: 10 pages, 11 figures, accepted by Astroparticle physic

    Photon-axion mixing and ultra-high-energy cosmic rays from BL Lac type objects -- Shining light through the Universe

    Full text link
    Photons may convert into axion like particles and back in the magnetic field of various astrophysical objects, including active galaxies, clusters of galaxies, intergalactic space and the Milky Way. This is a potential explanation for the candidate neutral ultra-high-energy (E>10^18 eV) particles from distant BL Lac type objects which have been observed by the High Resolution Fly's Eye experiment. Axions of the same mass and coupling may explain also TeV photons detected from distant blazars.Comment: Revtex 10 pages, 6 figures. V.2: QED dispersion effects taken into account; principal results unchanged. V3: misprints and sqrt(4*pi) factors in Gauss to eV conversion corrected; conclusions unchange

    Detecting gamma-ray bursts with the Pierre Auger Observatory using the single particle technique

    Full text link
    During the past ten years, gamma-ray bursts (GRB) have been extensively studied in the keV-MeV energy range but the high energy emission still remain mysterious. Ground based observatories have the possibility to investigate energy range around one GeV using the "single particle technique". The aim of the present study is to investigate the capability of the Pierre Auger Observatory to detect the high energy emission of GRBs with such a technique. According to the detector response to photon showers around one GeV, and making reasonable assumptions about the high energy emission of GRBs, we show that the Pierre Auger Observatory is a competitive instrument for this technique, and that water tanks are very promising detectors for the single particle technique.Comment: 4 pages, 2 figures, to appear in the 29th ICRC conference (Pune, India) proceeding

    Potential of a Neutrino Detector in the ANDES Underground Laboratory for Geophysics and Astrophysics of Neutrinos

    Get PDF
    The construction of the Agua Negra tunnels that will link Argentina and Chile under the Andes, the world longest mountain range, opens the possibility to build the first deep underground labo- ratory in the Southern Hemisphere. This laboratory has the acronym ANDES (Agua Negra Deep Experiment Site) and its overburden could be as large as \sim 1.7 km of rock, or 4500 mwe, providing an excellent low background environment to study physics of rare events like the ones induced by neutrinos and/or dark matter. In this paper we investigate the physics potential of a few kiloton size liquid scintillator detector, which could be constructed in the ANDES laboratory as one of its possible scientific programs. In particular, we evaluate the impact of such a detector for the studies of geoneutrinos and galactic supernova neutrinos assuming a fiducial volume of 3 kilotons as a reference size. We emphasize the complementary roles of such a detector to the ones in the Northern Hemisphere neutrino facilities through some advantages due to its geographical location.Comment: 20 pages, 16 figures and 9 table

    Sites for Gamma-ray Astronomy in Argentina

    Full text link
    We have searched for possible sites in Argentina for the installation of large air Cherenkov telescope arrays and water Cherenkov systems. At present seven candidates are identified at altitudes from 2500 to 4500 m. The highest sites are located at the Northwest of the country, in La Puna. Sites at 2500 and 3100 m are located in the West at El Leoncito Observatory, with excellent infrastructure. A description of these candidate sites is presented with emphasis on infrastructure and climatology.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008
    • …
    corecore