5 research outputs found

    SynthĂšse de glycosides bivalents biologiquement actifs

    Get PDF
    Les pathogĂšnes se lient souvent Ă  la cellule ou au tissu hĂŽte via des interactions glycoconjugĂ©-protĂ©ine faibles, mais acquĂ©rant une haute sĂ©lectivitĂ© par leur caractĂšre multivalent. Les lectines bactĂ©riennes, comme la FimH de Escherichia coli, se lient de façon sĂ©lective au saccharide correspondant et jouent un rĂŽle clĂ© dans l'adhĂ©sion des pathogĂšnes. Afin d'Ă©tudier les interactions entre les glycoconjugĂ©s et une protĂ©ine possĂ©dant un ou plusieurs domaines de reconnaissance du saccharide (CRDs), une variĂ©tĂ© de mannosides dimĂ©riques ont Ă©tĂ© synthĂ©tisĂ©s avec comme objectif de disposer de ligands pouvant surpasser l'affinitĂ© de la protĂ©ine avec son ligand naturel par multivalence. Les glycosides bivalents rigides permettent de rĂ©ticuler les protĂ©ines solubles possĂ©dant plusieurs CRDs et de former des rĂ©seaux insolubles. Une grande variĂ©tĂ© de rĂ©actions a Ă©tĂ© utilisĂ©e dans la littĂ©rature pour synthĂ©tiser de telles molĂ©cules comme les couplages organomĂ©talliques de Sonogashira et de Glaser. Ces prĂ©cĂ©dents couplages permettent d'obtenir des glycosides dimĂ©riques symĂ©triques ou asymĂ©triques Ă  partir d'espaceurs alcynes et aryles. Cependant, ces rĂ©actions ne permettent pas d'accĂ©der Ă  un espaceur de type biaryle. La prĂ©sence d'une aglycone aromatique permet d'accĂ©der Ă  des interactions secondaires favorables dans le site actif. C'est pourquoi une nouvelle mĂ©thodologie de couplage aryle-aryle de type Ullmann catalysĂ© au palladium a Ă©tĂ© dĂ©veloppĂ©e. Cette mĂ©thode peut gĂ©nĂ©rer avec efficacitĂ© une variĂ©tĂ© de glycosides dimĂ©riques originaux (10 exemples avec des rendements jusqu'Ă  96%). La capacitĂ© rĂ©ticulante de trois mannosides bivalents envers la concanavalin A a Ă©tĂ© Ă©valuĂ©e par turbidimĂ©trie et par diffusion dynamique de la lumiĂšre. Dans un deuxiĂšme volet, ont Ă©tĂ© synthĂ©tisĂ©s des lactosides bivalents assemblĂ©s par couplage de Sonogashira et possĂ©dant des espaceurs de type Ă©thylĂšne glycol de longueur variable.\ud ______________________________________________________________________________ \ud MOTS-CLÉS DE L’AUTEUR : Multivalence, Lectines, Ligands bivalents, RĂ©ticulation, Calatyle au palladium, Ullmann, Sonogashira

    Tandem Organocatalytic α-Chlorination−Aldol Reactions: A Powerful Tool for Carbohydrate and Iminosugars Synthesis

    Get PDF
    Carbohydrates play a vital role in regulating biological events that range from cell recognition to pathogen/host adhesion. Not surprisingly, inhibitors of carbohydrate binding and cleaving processes, such as iminosugars, have been identified as leads in various therapeutic areas and several glycomimetic drugs have been approved for use in humans. Despite several clinical successes, their de novo synthesis remains a significant challenge that also limits their integration within modern high-throughput screening technologies. Progress in glycomimetic research is often closely tied to advances in the de novo synthesis of unnatural carbohydrates, with much success being realized through the use of organocatalytic reactions. Our continued interest in the use of α-chloroaldehydes as building blocks for natural product synthesis led us to probe their organocatalytic aldol reactions with 2,2-dimethyl-1,3-dioxan-5-one. These efforts resulted in the discovery of a one-pot α-chlorination—aldol reaction that involves the dynamic kinetic resolution of an in situ generated α-chloroaldehyde. This process provides direct access to novel, enantiomerically-enriched building blocks (ÎČ-ketochlorohydrins) that are well-suited for the synthesis of carbohydrates and C-glycoconjugates. In this thesis, a unique synthetic strategy to convert a wide range of acetaldehyde derivatives into imino-C-nucleoside analogues in two or three straightforward transformations is described. We also show that this strategy can be readily applied to the rapid production of indolizidine and pyrrolizidine iminosugars. The high levels of enantio- and diastereoselectivity, excellent overall yields, convenience and broad substrate scope make this a promising process for diversity-oriented synthesis and should enable drug discovery efforts. Finally, the synthesis of configurationally divergent iminocyclitols is presented. This study led to the identification of potent, selective and brain penetrant OGA inhibitors as lead candidates for the treatment of Alzheimer’s disease

    Synthesis of DNA‐encoded disulfide‐ and thioether‐cyclized peptides

    No full text
    DNA-encoded chemical library technologies enable the screening of large combinatorial libraries of chemically and structurally diverse molecules, including short cyclic peptides. A challenge in the combinatorial synthesis of cyclic peptides is the final step, the cyclization of linear peptides that typically suffers from incomplete reactions and large variability between substrates. Several efficient peptide cyclization strategies rely on the modification of thiol groups, such as the formation of disulfide or thioether bonds between cysteines. In this work, we established a strategy and reaction conditions for the efficient chemical synthesis of cyclic peptide-DNA conjugates based on linking the side chains of cysteines. We tested two different thiol-protecting groups and found that tert-butylthio (S-tBu) works best for incorporating a pair of cysteines, and we show that the DNA-linked peptides can be efficiently cyclized through disulfide and thioether bond formation. In combination with established procedures for DNA encoding, the strategy for incorporation of cysteines may be readily applied for the generation and screening of disulfide- and thioether-cyclized peptide libraries

    A Tandem Organocatalytic α‑Chlorination–Aldol Reaction That Proceeds with Dynamic Kinetic Resolution: A Powerful Tool for Carbohydrate Synthesis

    No full text
    A tandem, proline-catalyzed α-chlorination/aldol reaction is described that involves a dynamic kinetic resolution of α-chloroaldehyde intermediates. The resulting <i>syn-</i>chlorohydrins are produced with good to excellent diastereoselectivity in high enantiopurity and provide new opportunities for the synthesis of carbohydrates

    Palladium-Catalyzed Ullmann-Type Reductive Homocoupling of Iodoaryl Glycosides

    No full text
    A catalytic synthesis of novel biaryl-linked divalent glycosides was achieved using an electroreductive palladium-catalyzed iodoaryl–iodoaryl coupling reaction. This new method was optimized for the synthesis of divalent biaryl-linked mannopyranosides that was subsequently generalized toward several carbohydrate substrates with yields up to 96%
    corecore