838 research outputs found

    Comment on "Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates"

    Get PDF
    The action potential (AP) is an electrical impulse elicited by depolarization of the neuronal membrane from the resting membrane potential (around -70  mV). It propagates along the axon, allowing for rapid and distant communication. Recently, it was claimed that two APs traveling in opposite direction will pass unhindered through each other (penetrate) upon collision [Gonzalez-Perez et al.Phys. Rev. X 4, 031047 (2014)PRXHAE2160-330810.1103/PhysRevX.4.031047]. We tested this claim under carefully controlled conditions and found that we cannot reproduce penetration. Instead, APs consistently annihilated upon collision. This is consistent with a vast body of literature

    Influences of state anxiety on gaze behavior and stepping accuracy in older adults during adaptive locomotion

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright © The Authors 2011.OBJECTIVES: Older adults deemed to be at a high risk of falling transfer their gaze from a stepping target earlier than their low-risk counterparts. The extent of premature gaze transfer increases with task complexity and is associated with a decline in stepping accuracy. This study tests the hypothesis that increased anxiety about upcoming obstacles is associated with (a) premature transfers of gaze toward obstacles (i.e., looking away from a target box prior to completing the step on it in order to fixate future constraints in the walkway) and (b) reduced stepping accuracy on the target in older adults. METHODS: High-risk (9) and low-risk (8) older adult participants walked a 10-m pathway containing a stepping target area followed by various arrangements of obstacles, which varied with each trial. Anxiety, eye movements, and movement kinematics were measured. RESULTS: Progressively increasing task complexity resulted in associated statistically significant increases in measures of anxiety, extent of early gaze transfer, and stepping inaccuracies in the high-risk group. DISCUSSION: These results provide evidence that increased anxiety about environmental hazards is related to suboptimal visual sampling behavior which, in turn, negatively influences stepping performance, potentially contributing to increased falls risk in older adults.Biotechnology and Biological Sciences Research Counci

    Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry

    Full text link
    The dynamics of an optically trapped particle are often determined by measuring intensity shifts of the back-scattered light from the particle using position sensitive detectors. We present a technique which measures the phase of the back-scattered light using balanced detection in an external Mach-Zender interferometer scheme where we separate out and beat the scattered light from the bead and that from the top surface of our trapping chamber. The technique has improved axial motion resolution over intensity-based detection, and can also be used to measure lateral motion of the trapped particle. In addition, we are able to track the Brownian motion of trapped 1 and 3 μ\mum diameter beads from the phase jitter and show that, similar to intensity-based measurements, phase measurements can also be used to simultaneously determine displacements of the trapped bead as well as the spring constant of the trap. For lateral displacements, we have matched our experimental results with a simulation of the overall phase contour of the back-scattered light for lateral displacements by using plane wave decomposition in conjunction with Mie scattering theory. The position resolution is limited by path drifts of the interferometer which we have presently reduced to obtain a displacement resolution of around 2 nm for 1.1 μ\mum diameter probes by locking the interferometer to a frequency stabilized diode laser.Comment: 10 pages, 7 figure

    Band Gaps for Atoms in Light based Waveguides

    Full text link
    The energy spectrum for a system of atoms in a periodic potential can exhibit a gap in the band structure. We describe a system in which a laser is used to produce a mechanical potential for the atoms, and a standing wave light field is used to shift the atomic levels using the Autler-Townes effect, which produces a periodic potential. The band structure for atoms guided by a hollow optical fiber waveguide is calculated in three dimensions with quantised external motion. The size of the band gap is controlled by the light guided by the fiber. This variable band structure may allow the construction of devices which can cool atoms. The major limitation on this device would be the spontaneous emission losses.Comment: 7 pages, four postscript figures, uses revtex.sty, available through http://online.anu.edu.au/Physics/papers/atom.htm

    Hydrodynamic flow of expanding Bose-Einstein condensates

    Full text link
    We study expansion of quasi-one-dimensional Bose-Einstein condensate (BEC) after switching off the confining harmonic potential. Exact solution of dynamical equations is obtained in framework of the hydrodynamic approximation and it is compared with the direct numerical simulation of the full problem showing excellent agreement at realistic values of physical parameters. We analyze the maximum of the current density and estimate the velocity of expansion. The results of the 1D analysis provides also qualitative understanding of some properties of BEC expansion observed in experiments.Comment: 5 pages, 3 figures, RevTeX4. To appear in Physical Review

    Extending the bandwidth of optical-tweezers interferometry

    Get PDF
    The extension of the bandwidth of optical-tweezers interferometry was discussed. It was found that the detection bandwidth was extended to at least 100 KHz, either by using wavelengths below 850 nm or by using different detectors at longer wavelengths. The power spectral density of the Brownian motion of micron-sized beads in optical tweezers was also measured

    On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets

    Full text link
    We analyse the three-particle scattering continuum in quasi one dimensional integer spin Heisenberg antiferromagnets within a low-energy effective field theory framework. We exactly determine the zero temperature dynamical structure factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion theory. We study the effects of interchain coupling in a Random Phase Approximation. We discuss the application of our results to recent neutron-scattering experiments on the Haldane-gap material CsNiCl3{\rm CsNiCl_3}.Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR

    Evaporative cooling of trapped fermionic atoms

    Full text link
    We propose an efficient mechanism for the evaporative cooling of trapped fermions directly into quantum degeneracy. Our idea is based on an electric field induced elastic interaction between trapped atoms in spin symmetric states. We discuss some novel general features of fermionic evaporative cooling and present numerical studies demonstrating the feasibility for the cooling of alkali metal fermionic species 6^6Li, 40^{40}K, and 82,84,86^{82,84,86}Rb. We also discuss the sympathetic cooling of fermionic hyperfine spin mixtures, including the effects of anisotropic interactions.Comment: to be publishe

    Charge stability and charge-state-based spin readout of shallow nitrogen-vacancy centers in diamond

    Full text link
    Spin-based applications of the negatively charged nitrogen-vacancy (NV) center in diamonds require efficient spin readout. One approach is the spin-to-charge conversion (SCC), relying on mapping the spin states onto the neutral (NV0^0) and negative (NV−^-) charge states followed by a subsequent charge readout. With high charge-state stability, SCC enables extended measurement times, increasing precision and minimizing noise in the readout compared to the commonly used fluorescence detection. Nano-scale sensing applications, however, require shallow NV centers within a few \si{\nano \meter} distance from the surface where surface related effects might degrade the NV charge state. In this article, we investigate the charge state initialization and stability of single NV centers implanted \approx \SI{5}{\nano \meter} below the surface of a flat diamond plate. We demonstrate the SCC protocol on four shallow NV centers suitable for nano-scale sensing, obtaining a reduced readout noise of 5--6 times the spin-projection noise limit. We investigate the general applicability of SCC for shallow NV centers and observe a correlation between NV charge-state stability and readout noise. Coating the diamond with glycerol improves both charge initialization and stability. Our results reveal the influence of the surface-related charge environment on the NV charge properties and motivate further investigations to functionalize the diamond surface with glycerol or other materials for charge-state stabilization and efficient spin-state readout of shallow NV centers suitable for nano-scale sensing.Comment: 9 pages, 5 figure
    • …
    corecore