801 research outputs found

    State of the art review on climate change impacts on natural ecosystems and adaptation

    Get PDF
    Climate change has become unavoidable and the Netherlands has started to adapt the water systems and coastal defense to reduce vulnerability to the effects of climate change. These strategies to make the Netherlands climate-proof will also have its impact on nature and ecosystem functioning, in addition to the direct impacts of climate change. This report provides a state-of-the-art review of national and international research with respect to climate change impacts and adaptation, relevant to natural ecosystems in the Netherlands. This review is intended to serve as a reference of current available knowledge and will assist in programming new research required for climate-proofing the Netherland

    Effects of litters with different concentrations of phenolics on the competition between Calluna vulgaris and Deschampsia flexuosa

    Get PDF
    We hypothesized that the outcome of competition between ericaceous plants and grasses is strongly affected by the concentrations of phenolics in the litter that they produce. To test the effect of phenolic-rich litter on soluble soil nitrogen concentrations, plant nitrogen uptake and inter-specific competition, we conducted a greenhouse experiment with the shrub Calluna vulgaris and the grass Deschampsia flexuosa and their leaf litters. Two litters of C. vulgaris were used, with equal nitrogen concentration but different (high and low) concentrations of total phenolics. The D. flexuosa leaf litter contained lower concentrations of phenolics, but higher concentrations of nitrogen than the C. vulgaris litters. The plants were grown in monocultures and in mixed cultures. Inorganic and dissolved organic nitrogen were measured monthly during the experiment. After four months, we measured above- and belowground biomass and the nutrient concentrations in above- and belowground plant parts. In monocultures, C. vulgaris produced more shoot and root biomass on its own litter than with no litter. Growth of Calluna was reduced on grass litter. D. flexuosa plants produced most biomass on their own litter type, whether in monocultures or in mixed cultures. Addition of Calluna litter stimulated the growth of D. flexuosa both in monoculture and in mixtures. The grass plants outcompeted Calluna both on shrub litter and on grass litter but not when grown without litter. The two C. vulgaris litter types that differed in their concentration of phenolics did not differ in their effects on the competition between the two species or on the production of inorganic and dissolved organic nitrogen. We conclude that the nitrogen content of the litter is more important as a plant feature driving competition between shrubs and grasses than the concentrations of phenolic

    Field Simulation of Global Change: Transplanting Northern Bog Mesocosms Southward

    Get PDF
    A large proportion of northern peatlands consists of Sphagnum-dominated ombrotrophic bogs. In these bogs, peat mosses (Sphagnum) and vascular plants occur in an apparent stable equilibrium, thereby sustaining the carbon sink function of the bog ecosystem. How global warming and increased nitrogen (N) deposition will affect the species composition in bog vegetation is still unclear. We performed a transplantation experiment in which mesocosms with intact vegetation were transplanted southward from north Sweden to north-east Germany along a transect of four bog sites, in which both temperature and N deposition increased. In addition, we monitored undisturbed vegetation in control plots at the four sites of the latitudinal gradient. Four growing seasons after transplantation, ericaceous dwarf shrubs had become much more abundant when transplanted to the warmest site which also had highest N deposition. As a result ericoid aboveground biomass in the transplanted mesocosms increased most at the southernmost site, this site also had highest ericoid biomass in the undisturbed vegetation. The two dominant Sphagnum species showed opposing responses when transplanted southward; Sphagnum balticum height increment decreased, whereas S. fuscum height increment increased when transplanted southward. Sphagnum production did not differ significantly among the transplanted mesocosms, but was lowest in the southernmost control plots. The dwarf shrub expansion and increased N concentrations in plant tissues we observed, point in the direction of a positive feedback toward vascular plant-dominance suppressing peat-forming Sphagnum in the long term. However, our data also indicate that precipitation and phosphorus availability influence the competitive balance between Sphagnum, dwarf shrubs and graminoids

    Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands

    Get PDF
    Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 Β± 8.2 (mean Β± SE) and 61.5 Β± 7.1 mg m-2 h-1 for CO2 and 33.7 Β± 9.3 and 3.9 Β± 1.6 mg m-2 h-1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3- concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodie

    Natuurontwikkeling en landbouw

    Get PDF
    The publication starts with a description of the main features of the Nature Policy Plan (Natuurbeleidsplan) and their consequences for research into nature development. The second chapter deals with a specific DLO research programme about the possibilities for the transformation of agricultural zones into areas of high biological diversity. Other matters dealt with are : the nutrient balance of agricultural systems (chapter 3), hydrology and soil characteristics (chapter 4), ecological infrastructure and seed dispersal (chapter 5), integrated agriculture (chapter 6) and agricultural fringe areas (chapter 7)

    Veranderingen in avifauna en flora van de noordelijke Gelderse Vallei

    Get PDF
    Zowel in het begin van de jaren 1970 (voor vogels) en rond 1980 (voor planten) als in 2002 zijn inventarisaties uitgevoerd in het noordwesten van de provincie Gelderland in de gemeenten Nijkerk, Putten en Barneveld. In grote lijnen is het oorspronkelijke landschap hier nog steeds zichtbaar. Door de inventarisaties te vergelijken werd het mogelijk om grote veranderingen in biodiversiteit vast te stellen. Het gebied lijkt representatief te zijn voor de ontwikkeling van natuurwaarden in het landelijk gebie

    Peatlands and the carbon cycle: from local processes to global implications - a synthesis

    Get PDF
    Peatlands cover only 3% of the Earth's land surface but boreal and subarctic peatlands store about 15-30% of the world's soil carbon ( C) as peat. Despite their potential for large positive feedbacks to the climate system through sequestration and emission of greenhouse gases, peatlands are not explicitly included in global climate models and therefore in predictions of future climate change. In April 2007 a symposium was held in Wageningen, the Netherlands, to advance our understanding of peatland C cycling. This paper synthesizes the main findings of the symposium, focusing on (i) small-scale processes, (ii) C fluxes at the landscape scale, and (iii) peatlands in the context of climate change. The main drivers controlling most are related to some aspects of hydrology. Despite high spatial and annual variability in Net Ecosystem Exchange ( NEE), the differences in cumulative annual NEE are more a function of broad scale geographic location and physical setting than internal factors, suggesting the existence of strong feedbacks. In contrast, trace gas emissions seem mainly controlled by local factors. Key uncertainties remain concerning the existence of perturbation thresholds, the relative strengths of the CO2 and CH4 feedback, the links among peatland surface climate, hydrology, ecosystem structure and function, and trace gas biogeochemistry as well as the similarity of process rates across peatland types and climatic zones. Progress on these research areas can only be realized by stronger co-operation between disciplines that address different spatial and temporal scales

    The Infocus Hard X-ray Telescope: Pixellated CZT Detector/Shield Performance and Flight Results

    Get PDF
    The CZT detector on the Infocus hard X-ray telescope is a pixellated solid-state device capable of imaging spectroscopy by measuring the position and energy of each incoming photon. The detector sits at the focal point of an 8m focal length multilayered grazing incidence X-ray mirror which has significant effective area between 20--40 keV. The detector has an energy resolution of 4.0keV at 32keV, and the Infocus telescope has an angular resolution of 2.2 arcminute and a field of view of about 10 arcminutes. Infocus flew on a balloon mission in July 2001 and observed Cygnus X-1. We present results from laboratory testing of the detector to measure the uniformity of response across the detector, to determine the spectral resolution, and to perform a simple noise decomposition. We also present a hard X-ray spectrum and image of Cygnus X-1, and measurements of the hard X-ray CZT background obtained with the SWIN detector on Infocus.Comment: To appear in the proceedings of the SPIE conference "Astronomical Telescopes and Instrumentation", #4851-116, Kona, Hawaii, Aug. 22-28, 2002. 12 pages, 9 figure

    Impact of herbivores on nitrogen cycling:contrasting effects of small and large species

    Get PDF
    Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazin

    Spatial and temporal variation of methane emissions in drained eutrophic peat agro-ecosystems: drainage ditches as emission hotspots

    Get PDF
    International audienceOur research investigates the spatial and temporal variability of methane (CH4) emissions in two drained eutrophic peat areas (one intensively managed and the other less intensively managed) and the correlation between CH4 emissions and soil temperature, air temperature, soil moisture content and water table. We stratified the landscape into landscape elements that represent different conditions in terms of topography and therefore differ in moisture conditions. There was great spatial variability in the fluxes in both areas; the ditches and ditch edges (together 27% of the landscape) were methane hotspots whereas the dry fields had the smallest fluxes. In the intensively managed site the fluxes were significantly higher by comparison with the less intensively managed site. In all the landscape element elements the best explanatory variable for CH4 emission was temperature. Neither soil moisture content nor water table correlated significantly with CH4 emissions, except in April, where soil moisture was the best explanatory variable
    • …
    corecore