4,589 research outputs found

    The Yersinia enterocolitica Ysa type III secretion system is expressed during infections both in vitro and in vivo.

    Get PDF
    Yersinia enterocolitica biovar 1B maintains two type III secretion systems (T3SS) that are involved in pathogenesis, the plasmid encoded Ysc T3SS and the chromosomally encoded Ysa T3SS. In vitro, the Ysa T3SS has been shown to be expressed only at 26°C in a high-nutrient medium containing an exceptionally high concentration of salt - an artificial condition that provides no clear insight on the nature of signal that Y. enterocolitica responds to in a host. However, previous research has indicated that the Ysa system plays a role in the colonization of gastrointestinal tissues of mice. In this study, a series of Ysa promoter fusions to green fluorescent protein gene (gfp) were created to analyze the expression of this T3SS during infection. Using reporter strains, infections were carried out in vitro using HeLa cells and in vivo using the mouse model of yersiniosis. Expression of green fluorescent protein (GFP) was measured from the promoters of yspP (encoding a secreted effector protein) and orf6 (encoding a structural component of the T3SS apparatus) in vitro and in vivo. During the infection of HeLa cells GFP intensity was measured by fluorescence microscopy, while during murine infections GFP expression in tissues was measured by flow cytometry. These approaches, combined with quantification of yspP mRNA transcripts by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), demonstrate that the Ysa system is expressed in vitro in a contact-dependent manner, and is expressed in vivo during infection of mice

    A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW - Extended version

    Full text link
    We consider a dynamic vehicle routing problem with time windows and stochastic customers (DS-VRPTW), such that customers may request for services as vehicles have already started their tours. To solve this problem, the goal is to provide a decision rule for choosing, at each time step, the next action to perform in light of known requests and probabilistic knowledge on requests likelihood. We introduce a new decision rule, called Global Stochastic Assessment (GSA) rule for the DS-VRPTW, and we compare it with existing decision rules, such as MSA. In particular, we show that GSA fully integrates nonanticipativity constraints so that it leads to better decisions in our stochastic context. We describe a new heuristic approach for efficiently approximating our GSA rule. We introduce a new waiting strategy. Experiments on dynamic and stochastic benchmarks, which include instances of different degrees of dynamism, show that not only our approach is competitive with state-of-the-art methods, but also enables to compute meaningful offline solutions to fully dynamic problems where absolutely no a priori customer request is provided.Comment: Extended version of the same-name study submitted for publication in conference CPAIOR201

    Study of the (p,Pi) Reaction in the Two-Nucleon Model

    Get PDF
    This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit

    Energy Dependence of the 3-He(p,pi+)4-He Reaction

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440

    Orchid: A Two-nucleon Model Code for (p, pi) Calculations

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
    corecore