4,589 research outputs found
The Yersinia enterocolitica Ysa type III secretion system is expressed during infections both in vitro and in vivo.
Yersinia enterocolitica biovar 1B maintains two type III secretion systems (T3SS) that are involved in pathogenesis, the plasmid encoded Ysc T3SS and the chromosomally encoded Ysa T3SS. In vitro, the Ysa T3SS has been shown to be expressed only at 26°C in a high-nutrient medium containing an exceptionally high concentration of salt - an artificial condition that provides no clear insight on the nature of signal that Y. enterocolitica responds to in a host. However, previous research has indicated that the Ysa system plays a role in the colonization of gastrointestinal tissues of mice. In this study, a series of Ysa promoter fusions to green fluorescent protein gene (gfp) were created to analyze the expression of this T3SS during infection. Using reporter strains, infections were carried out in vitro using HeLa cells and in vivo using the mouse model of yersiniosis. Expression of green fluorescent protein (GFP) was measured from the promoters of yspP (encoding a secreted effector protein) and orf6 (encoding a structural component of the T3SS apparatus) in vitro and in vivo. During the infection of HeLa cells GFP intensity was measured by fluorescence microscopy, while during murine infections GFP expression in tissues was measured by flow cytometry. These approaches, combined with quantification of yspP mRNA transcripts by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), demonstrate that the Ysa system is expressed in vitro in a contact-dependent manner, and is expressed in vivo during infection of mice
A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW - Extended version
We consider a dynamic vehicle routing problem with time windows and
stochastic customers (DS-VRPTW), such that customers may request for services
as vehicles have already started their tours. To solve this problem, the goal
is to provide a decision rule for choosing, at each time step, the next action
to perform in light of known requests and probabilistic knowledge on requests
likelihood. We introduce a new decision rule, called Global Stochastic
Assessment (GSA) rule for the DS-VRPTW, and we compare it with existing
decision rules, such as MSA. In particular, we show that GSA fully integrates
nonanticipativity constraints so that it leads to better decisions in our
stochastic context. We describe a new heuristic approach for efficiently
approximating our GSA rule. We introduce a new waiting strategy. Experiments on
dynamic and stochastic benchmarks, which include instances of different degrees
of dynamism, show that not only our approach is competitive with
state-of-the-art methods, but also enables to compute meaningful offline
solutions to fully dynamic problems where absolutely no a priori customer
request is provided.Comment: Extended version of the same-name study submitted for publication in
conference CPAIOR201
Study of the (p,Pi) Reaction in the Two-Nucleon Model
This work was supported by the National Science Foundation Grants NSF PHY 78-22774 A03, NSF PHY 81-14339, and by Indiana Universit
Energy Dependence of the 3-He(p,pi+)4-He Reaction
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
Orchid: A Two-nucleon Model Code for (p, pi) Calculations
This research was sponsored by the National Science Foundation Grant NSF PHY 87-1440
- …