5,903 research outputs found

    o-minimal GAGA and a conjecture of Griffiths

    Full text link
    We prove a conjecture of Griffiths on the quasi-projectivity of images of period maps using algebraization results arising from o-minimal geometry. Specifically, we first develop a theory of analytic spaces and coherent sheaves that are definable with respect to a given o-minimal structure, and prove a GAGA-type theorem algebraizing definable coherent sheaves on complex algebraic spaces. We then combine this with algebraization theorems of Artin to show that proper definable images of complex algebraic spaces are algebraic. Applying this to period maps, we conclude that the images of period maps are quasi-projective and that the restriction of the Griffiths bundle is ample.Comment: Comments welcome! v2: minor change

    Vortex filament solutions of the Navier-Stokes equations

    Full text link
    We consider solutions of the Navier-Stokes equations in 3d3d with vortex filament initial data of arbitrary circulation, that is, initial vorticity given by a divergence-free vector-valued measure of arbitrary mass supported on a smooth curve. First, we prove global well-posedness for perturbations of the Oseen vortex column in scaling-critical spaces. Second, we prove local well-posedness (in a sense to be made precise) when the filament is a smooth, closed, non-self-intersecting curve. Besides their physical interest, these results are the first to give well-posedness in a neighborhood of large self-similar solutions of 3d3d Navier-Stokes, as well as solutions which are locally approximately self-similar.Comment: 89 page

    Extent of stacking disorder in diamond

    Full text link
    Hexagonal diamond has been predicted computationally to display extraordinary physical properties including a hardness that exceeds cubic diamond. However, a recent electron microscopy study has shown that so-called hexagonal diamond samples are in fact not discrete materials but faulted and twinned cubic diamond. We now provide a quantitative analysis of cubic and hexagonal stacking in diamond samples by analysing X-ray diffraction data with the DIFFaX software package. The highest fractions of hexagonal stacking we find in materials which were previously referred to as hexagonal diamond are below 60%. The remainder of the stacking sequences are cubic. We show that the cubic and hexagonal sequences are interlaced in a complex way and that naturally occurring Lonsdaleite is not a simple phase mixture of cubic and hexagonal diamond. Instead, it is structurally best described as stacking disordered diamond. The future experimental challenge will be to prepare diamond samples beyond 60% hexagonality and towards the so far elusive 'perfect' hexagonal diamond
    • …
    corecore