1,721 research outputs found
The 3-D ionization structure and evolution of NGC 7009 (Saturn Nebula)
Tomographic and 3-D analyses for extended, emission-line objects are applied
to long-slit ESO NTT + EMMI high-resolution spectra of the intriguing planetary
nebula NGC 7009, covered at twelve position angles. We derive the gas expansion
law, the diagnostics and ionic radial profiles, the distance and the central
star parameters, the nebular photo-ionization model and the spatial recovery of
the plasma structure and evolution. The Saturn Nebula (distance~1.4 kpc,
age~6000 yr, ionized mass~0.18 Mo) consists of several interconnected
components, characterized by different morphology, physical conditions,
excitation and kinematics. The internal shell, the main shell, the streams and
the ansae expand at V(exp)~4.0xR" km/s, the outer shell, the caps and the
equatorial pseudo-ring at V(exp)~3.15xR" km/s, and the halo at V(exp)~10 km/s.
We compare the radial distribution of the physical conditions and the line
fluxes observed in the eight sub-systems with the theoretical profiles coming
from the photo-ionization code CLOUDY, inferring that all the spectral
characteristics of NGC 7009 are explainable in terms of photo-ionization by the
central star, a hot (logT*~4.95) and luminous (log L*/Lo~3.70) 0.60--0.61 Mo
post--AGB star in the hydrogen-shell nuclear burning phase. The 3--D shaping of
the Saturn Nebula is discussed within an evolutionary scenario dominated by
photo-ionization and supported by the fast stellar wind: it begins with the
superwind ejection, passes through the neutral, transition phase (lasting ~
3000 yr), the ionization start (occurred ~2000 yr ago), and the full ionization
of the main shell (~1000 yr ago), at last reaching the present days: the whole
nebula is optically thin to the UV stellar flux, except the caps and the ansae.Comment: accepted for pub. in A&A, 28 pages, 14 figures, full text with
figures available at http://web.pd.astro.it/supern/ps/h4665.ps, movies on the
3D structure available at http://web.pd.astro.it/sabbadin
A Common Explosion Mechanism for Type Ia Supernovae
Type Ia supernovae, the thermonuclear explosions of white dwarf stars
composed of carbon and oxygen, were instrumental as distance indicators in
establishing the acceleration of the universe's expansion. However, the physics
of the explosion are debated. Here we report a systematic spectral analysis of
a large sample of well observed type Ia supernovae. Mapping the velocity
distribution of the main products of nuclear burning, we constrain theoretical
scenarios. We find that all supernovae have low-velocity cores of stable
iron-group elements. Outside this core, nickel-56 dominates the supernova
ejecta. The outer extent of the iron-group material depends on the amount of
nickel-56 and coincides with the inner extent of silicon, the principal product
of incomplete burning. The outer extent of the bulk of silicon is similar in
all SNe, having an expansion velocity of ~11000 km/s and corresponding to a
mass of slightly over one solar mass. This indicates that all the supernovae
considered here burned similar masses, and suggests that their progenitors had
the same mass. Synthetic light curve parameters and three-dimensional explosion
simulations support this interpretation. A single explosion scenario, possibly
a delayed detonation, may thus explain most type Ia supernovae.Comment: 8 pages, 2 figure
New insights into structural determinants of prion protein folding and stability
Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a \u3b2-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a \u3b2-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability
Supersymmetric gauge theories on five-manifolds
We construct rigid supersymmetric gauge theories on Riemannian
five-manifolds. We follow a holographic approach, realizing the manifold as the
conformal boundary of a six-dimensional bulk supergravity solution. This leads
to a systematic classification of five-dimensional supersymmetric backgrounds
with gravity duals. We show that the background metric is furnished with a
conformal Killing vector, which generates a transversely holomorphic foliation
with a transverse Hermitian structure. Moreover, we prove that any such metric
defines a supersymmetric background. Finally, we construct supersymmetric
Lagrangians for gauge theories coupled to arbitrary matter on such backgrounds.Comment: 35 pages: v2: minor corrections and references added. Published
versio
Observed and Physical Properties of Core-Collapse Supernovae
I use photometry and spectroscopy data for 24 Type II plateau supernovae to
examine their observed and physical properties. This dataset shows that these
objects encompass a wide range of ~5 mag in their plateau luminosities, their
expansion velocities vary by x5, and the nickel masses produced in these
explosions go from 0.0016 to 0.26 Mo. From a subset of 16 objects I find that
the explosion energies vary between 0.6x and 5.5x10^51 ergs, the ejected masses
encompass the range 14-56 Mo, and the progenitors' radii go from 80 to 600 Ro.
Despite this great diversity several regularities emerge, which reveal that
there is a continuum in the properties of these objects from the faint,
low-energy, nickel-poor SNe 1997D and 1999br, to the bright, high-energy,
nickel-rich SN 1992am. This study provides evidence that more massive
progenitors produce more energetic explosions, thus suggesting that the outcome
of the core collapse is somewhat determined by the envelope mass. I find also
that supernovae with greater energies produce more nickel. Similar
relationships appear to hold for Type Ib/c supernovae, which suggests that both
Type II and Type Ib/c supernovae share the same core physics. When the whole
sample of core collapse objects is considered, there is a continous
distribution of energies below 8x10^51 ergs. Far above in energy scale and
nickel production lies the extreme hypernova 1998bw, the only supernova firmly
associated to a GRB.Comment: 25 pages, 7 figures, accepted for Part 1 of Astrophysical Journa
- …