14 research outputs found
Previsão de vulnerabilidade a incêndios florestais utilizando regressão logística e redes neurais artificiais : um estudo de caso no Distrito Federal brasileiro
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós-graduação, 2017.Incêndios florestais são um problema global e queimam milhões de hectares de vegetação nativa todos os anos. O Cerrado brasileiro é a savana neotropical mais rica em biodiversidade do mundo, e uma das regiões mais afetadas por incêndios, sendo considerado um ecossistema tolerante ao fogo. Apesar da adaptação do bioma ao fogo, a alta frequência de incêndios trazida pela ocupação humana tem danificado o ecossistema mais rápido do que ele é capaz de se recuperar. O combate a incêndios é custoso e, portanto, medidas de prevenção de incêndios são a melhor maneira de evitar seus danos em longo prazo. Prever a distribuição espacial da ocorrência de incêndios florestais é um passo importante para a realização do manejo do fogo. Para isto, podem ser utilizados modelos que relacionem a ocorrência do fogo às variáveis que o influenciam. Neste estudo, dois modelos distintos de previsão — Regressão Logística (RL) e uma Rede Neural Artificial (RNA) — foram aplicados à região do Distrito Federal brasileiro, que se encontra inserida dentro do bioma Cerrado. Produtos de área queimada baseados em imagens LANDSAT foram utilizados para gerar a variável dependente, e nove outras variáveis espacialmente explícitas e de origem antropogênica ou ambiental foram utilizadas como variáveis independentes. Os modelos foram otimizados em função da melhor medida de Area under Receiver Operating Characteristic (AUROC, ou simplesmente AUC) a partir da seleção de atributos, e posteriormente validados utilizando dados reais de áreas queimadas. Os modelos mostraram performances similares, mas o modelo utilizando a RNA demonstrou melhor AUC (0.7755), e melhor acurácia ao classificar áreas não queimadas (73.39%), porém pior acurácia média (66.55%) e ao classificar áreas queimadas, para as quais o modelo LR apresentou o melhor resultado (65.24%). Adicionalmente, foi comparada a importância de cada variável aos modelos, contribuindo para o conhecimento das causas principais de incêndios na região. As variáveis demonstraram importâncias similares em ambos os modelos utilizados, e as variáveis de maior importância foram a elevação do terreno e o tipo de uso do solo. Os resultados demonstraram bons desempenhos de todos os modelos testados, mas recomenda-se a execução de mais estudos similares mais detalhados em outras áreas de na savana Brasileira, dado que ainda são poucos os estudos deste tipo.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).Wildfires are a global problem, burning millions of hectares of natural forests every year. The Brazilian Cerrado is the richest neotropical savanna of the world in regards to biodiversity, and one of the regions most affected by fires, and also considered a firedependent ecosystem. Despite being adapted to the occurrence of fire, the high frequency of wildfires in the region due to human occupation is damaging the ecosystem faster than it can recover. Fighting fires is costly, and therefore the best way to avoid damages in the long-term is through prevention techniques. Predicting the spatial distribution of wildfires is an important step towards proper wildfire management. For that purpose, models that relate the occurrence of fire to certain variables can be used. In this work, we applied two distinct prediction models — Logistic Regression (LR) and an Artificial Neural Network (ANN) — to the region of Brazil’s Federal District, located inside the Brazilian Cerrado, the largest savanna in South America and the world’s richest Neotropical Savanna. We used LANDSAT based burned area products to generate the dependent variable, and nine different anthropogenic and environmental factors were used as the explanatory variables. The models were optimized via feature selection for best Area Under Receiver Operating Characteristic Curve (AUROC) and then validated with real burn area data. The models had similar performance, but the ANN model showed a better AUC value (0.7755) and better accuracy when evaluating exclusively nonburned areas (73.39%), while it had worse accuracy overall (66.55%) and when classifying burned areas, in which LR performed better (65.24%). Moreover, we compared the contribution of each variable to the models, adding some insight into the main causes of wildfires in the region. Variables had similar contributions to the models, and the main driving aspects of the distribution of burned areas in the region were the land use type and elevation. The results showed good performance for both models tested, but further research regarding wildfire in the Brazilian savanna is recommended, as such studies are still scarce
Determinação do teor de umidade em função da constante dielétrica de seis espécies de madeira
Monografia (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Florestal, 2014.O conteúdo de água na madeira afeta grande parte de suas características mais importantes, tais como suas propriedades físicas e mecânicas, o que ressalta a necessidade da utilização de métodos eficientes e confiáveis de medição do seu teor de umidade. O objetivo do presente estudo foi o desenvolvimento de equações matemáticas para estimar teores de umidade em função da constante dielétrica das espécies Nectandra dioica, Terminalia glabrescens, Virola michelii, Tachigali myrmecophila, Eucaliptus saligna e Sclerolobium paniculatum var rubiginosum. Para isto foi medida a constante dielétrica das espécies em diferentes teores de umidade, a fim de criar modelos de regressão para sua estimativa. O modelo que melhor se aplicou a todas as espécies foi o modelo linear “y=a+Bx”, onde “y” é o teor de umidade em porcentagem, “a” e “B” os coeficientes da equação, e “x” a constante dielétrica do material. As equações das espécies N. dioica, T. glabrescens, V. michelii e T. myrmecophila apresentaram acurácia adequada, com erros médios inferiores a 1% dentro do intervalo de 0% e 30% de umidade, onde se encontram madeiras destinadas à comercialização. As equações das espécies E. saligna e S. paniculatum mostraram maior dispersão de seus dados, com erros superiores a 1% dentro do mesmo intervalo. Observou-se também que a massa específica exerceu certa influência sobre a relação entre a constante dielétrica e o teor de umidade da madeira, e espécies com massas específicas similares mostraram comportamentos análogos. _____________________________________________________________________________ ABSTRACTThe moisture content of wood exerts great influence over its most important characteristics, like its physical and mechanical properties. This fact highlights the necessity of the utilization of efficient and trustable moisture content measurement methods. The objective of this study was the creation of mathematical equations in order to estimate wood moisture content based on the dielectric constant of the species: Nectandra dioica, Terminalia glabrescens, Virola michelii, Tachigali myrmecophila, Eucaliptus saligna and Sclerolobium paniculatum var rubiginosum. For that, the dielectric constant of the species was measured along with different moisture contents, in order to elaborate the regression models. The model with the best fits for the species was the linear model “y=a+Bx”, where “y” is the moisture content in percentage, “a” and “B” the equation coefficients, and “x” the dielectric constant of the material. The equations for the species N. dioica, T. glabrescens, V. michelii and T. myrmecophila showed adequate precision, with average error under 1% in moisture contents between 0% and 30%, where most commercial woods are found. The equations for the species E. saligna and S. paniculatum showed greater dispersion in its values, with average errors over 1% in the same interval. It was also observed that the density of the wood pieces exerted certain influence over the relation between their moisture content and dielectric constant, and species with similar densities showed analogous behavior
Aplicações de modelos de deep learning para monitoramento ambiental e agrícola no Brasil
Tese (doutorado) — Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Programa de Pós-Graduação em Geografia, 2022.Algoritmos do novo campo de aprendizado de máquina conhecido como Deep Learning têm se popularizado recentemente, mostrando resultados superiores a modelos tradicionais em métodos de classificação e regressão. O histórico de sua utilização no campo
do sensoriamento remoto ainda é breve, porém eles têm mostrado resultados similarmente
superiores em processos como a classificação de uso e cobertura da terra e detecção de
mudança. Esta tese teve como objetivo o desenvolvimento de metodologias utilizando
estes algoritmos com um enfoque no monitoramento de alvos críticos no Brasil por via
de imagens de satélite a fim de buscar modelos de alta precisão e acurácia para substituir
metodologias utilizadas atualmente. Ao longo de seu desenvolvimento, foram produzidos
três artigos onde foi avaliado o uso destes algoritmos para a detecção de três alvos distintos:
(a) áreas queimadas no Cerrado brasileiro, (b) áreas desmatadas na região da Amazônia e
(c) plantios de arroz no sul do Brasil. Apesar do objetivo similar na produção dos artigos,
procurou-se distinguir suficientemente suas metodologias a fim de expandir o espaço metodológico conhecido para fornecer uma base teórica para facilitar e incentivar a adoção
destes algoritmos em contexto nacional. O primeiro artigo avaliou diferentes dimensões
de amostras para a classificação de áreas queimadas em imagens Landsat-8. O segundo
artigo avaliou a utilização de séries temporais binárias de imagens Landsat para a detecção
de novas áreas desmatadas entre os anos de 2017, 2018 e 2019. O último artigo utilizou
imagens de radar Sentinel-1 (SAR) em uma série temporal contínua para a delimitação dos
plantios de arroz no Rio Grande do Sul. Modelos similares foram utilizados em todos os
artigos, porém certos modelos foram exclusivos a cada publicação, produzindo diferentes
resultados. De maneira geral, os resultados encontrados mostram que algoritmos de Deep
Learning são não só viáveis para detecção destes alvos mas também oferecem desempenho superior a métodos existentes na literatura, representando uma alternativa altamente
eficiente para classificação e detecção de mudança dos alvos avaliados.Algorithms belonging to the new field of machine learning called Deep Learning have
been gaining popularity recently, showing superior results when compared to traditional
classification and regression methods. The history of their use in the field of remote sensing is not long, however they have been showing similarly superior results in processes
such as land use classification and change detection. This thesis had as its objective the
development of methodologies using these algorithms with a focus on monitoring critical
targets in Brazil through satellite imagery in order to find high accuracy and precision models to substitute methods used currently. Through the development of this thesis, articles
were produced evaluating their use for the detection of three distinct targets: (a) burnt
areas in the Brazilian Cerrado, (b) deforested areas in the Amazon region and (c) rice fields in the south of Brazil. Despite the similar objective in the production of these articles,
the methodologies in each of them was made sufficiently distinct in order to expand the
methodological space known. The first article evaluated the use of differently sized samples to classify burnt areas in Landsat-8 imagery. The second article evaluated the use of
binary Landsat time series to detect new deforested areas between the years of 2017, 2018
and 2019. The last article used continuous radar Sentinel-1 (SAR) time series to map rice
fields in the state of Rio Grande do Sul. Similar models were used in all articles, however
certain models were exclusive to each one. In general, the results show that not only are
the Deep Learning models viable but also offer better results in comparison to other existing methods, representing an efficient alternative when it comes to the classification and
change detection of the targets evaluated
Change detection of deforestation in the Brazilian Amazon using landsat data and convolutional neural networks
Mapping deforestation is an essential step in the process of managing tropical rainforests.
It lets us understand and monitor both legal and illegal deforestation and its implications,
which include the effect deforestation may have on climate change through greenhouse gas emissions.
Given that there is ample room for improvements when it comes to mapping deforestation using
satellite imagery, in this study, we aimed to test and evaluate the use of algorithms belonging to the
growing field of deep learning (DL), particularly convolutional neural networks (CNNs), to this end.
Although studies have been using DL algorithms for a variety of remote sensing tasks for the past
few years, they are still relatively unexplored for deforestation mapping. We attempted to map the
deforestation between images approximately one year apart, specifically between 2017 and 2018 and
between 2018 and 2019. Three CNN architectures that are available in the literature—SharpMask,
U-Net, and ResUnet—were used to classify the change between years and were then compared to two
classic machine learning (ML) algorithms—random forest (RF) and multilayer perceptron (MLP)—as
points of reference. After validation, we found that the DL models were better in most performance
metrics including the Kappa index, F1 score, and mean intersection over union (mIoU) measure,
while the ResUnet model achieved the best overall results with a value of 0.94 in all three measures
in both time sequences. Visually, the DL models also provided classifications with better defined
deforestation patches and did not need any sort of post-processing to remove noise, unlike the ML
models, which needed some noise removal to improve results
Rice crop detection using LSTM, Bi-LSTM, and machine learning models from sentinel-1 time series
The Synthetic Aperture Radar (SAR) time series allows describing the rice phenological cycle by the backscattering time signature. Therefore, the advent of the Copernicus Sentinel-1 program expands studies of radar data (C-band) for rice monitoring at regional scales, due to the high temporal resolution and free data distribution. Recurrent Neural Network (RNN) model has reached state-of-the-art in the pattern recognition of time-sequenced data, obtaining a significant advantage at crop classification on the remote sensing images. One of the most used approaches in the RNN model is the Long Short-Term Memory (LSTM) model and its improvements, such as Bidirectional LSTM (Bi-LSTM). Bi-LSTM models are more effective as their output depends on the previous and the next segment, in contrast to the unidirectional LSTM models. The present research aims to map rice crops from Sentinel-1 time series (band C) using LSTM and Bi-LSTM models in West Rio Grande do Sul (Brazil). We compared the results with traditional Machine Learning techniques: Support Vector Machines (SVM), Random Forest (RF), k-Nearest Neighbors (k-NN), and Normal Bayes (NB). The developed methodology can be subdivided into the following steps: (a) acquisition of the Sentinel time series over two years; (b) data pre-processing and minimizing noise from 3D spatial-temporal filters and smoothing with Savitzky-Golay filter; (c) time series classification procedures; (d) accuracy analysis and comparison among the methods. The results show high overall accuracy and Kappa (>97% for all methods and metrics). Bi-LSTM was the best model, presenting statistical differences in the McNemar test with a significance of 0.05. However, LSTM and Traditional Machine Learning models also achieved high accuracy values. The study establishes an adequate methodology for mapping the rice crops in West Rio Grande do Sul
Performance Analysis of Deep Convolutional Autoencoders with Different Patch Sizes for Change Detection from Burnt Areas
Fire is one of the primary sources of damages to natural environments globally. Estimates show that approximately 4 million km2 of land burns yearly. Studies have shown that such estimates often underestimate the real extent of burnt land, which highlights the need to find better, state-of-the-art methods to detect and classify these areas. This study aimed to analyze the use of deep convolutional Autoencoders in the classification of burnt areas, considering different sample patch sizes. A simple Autoencoder and the U-Net and ResUnet architectures were evaluated. We collected Landsat 8 OLI+ data from three scenes in four consecutive dates to detect the changes specifically in the form of burnt land. The data were sampled according to four different sampling strategies to evaluate possible performance changes related to sampling window sizes. The training stage used two scenes, while the validation stage used the remaining scene. The ground truth change mask was created using the Normalized Burn Ratio (NBR) spectral index through a thresholding approach. The classifications were evaluated according to the F1 index, Kappa index, and mean Intersection over Union (mIoU) value. Results have shown that the U-Net and ResUnet architectures offered the best classifications with average F1, Kappa, and mIoU values of approximately 0.96, representing excellent classification results. We have also verified that a sampling window size of 256 by 256 pixels offered the best results
Performance analysis of deep convolutional autoencoders with different patch sizes for change detection from burnt areas
Fire is one of the primary sources of damages to natural environments globally. Estimates show that approximately 4 million km2 of land burns yearly. Studies have shown that such estimates often underestimate the real extent of burnt land, which highlights the need to find better, state-of-the-art methods to detect and classify these areas. This study aimed to analyze the use of deep convolutional Autoencoders in the classification of burnt areas, considering di erent sample patch sizes. A simple Autoencoder and the U-Net and ResUnet architectures were evaluated. We collected Landsat 8 OLI+ data from three scenes in four consecutive dates to detect the changes specifically in the form of burnt land. The data were sampled according to four di erent sampling strategies to evaluate possible performance changes related to sampling window sizes. The training stage used two scenes, while
the validation stage used the remaining scene. The ground truth change mask was created using the Normalized Burn Ratio (NBR) spectral index through a thresholding approach. The classifications were evaluated according to the F1 index, Kappa index, and mean Intersection over Union (mIoU) value. Results have shown that the U-Net and ResUnet architectures offered the best classifications with average F1, Kappa, and mIoU values of approximately 0.96, representing excellent classification
results. We have also verified that a sampling window size of 256 by 256 pixels offered the best results
Dealing with clouds and seasonal changes for center pivot irrigation systems detection using Instance segmentation in sentinel-2 time series
The automatic detection of Center Pivot Irrigation Systems (CPIS) is fundamental for establishing public policies,
especially in countries with a growth perspective in this technology, like Brazil. Previous studies to detect CPIS using deep learning used single-date optical images, containing limitations due to seasonal changes and cloud cover. Therefore, this research aimed to detect CPIS using Sentinel-2 multitemporal images (containing six dates) and instance segmentation, considering seasonal variations and different proportions of cloudy images, generalizing the models to detect CPIS in diverse situations. We used a novel augmentation strategy, in which, for each iteration, six images were randomly selected from the time series (from a total of 11 dates) in random order. We evaluated the Mask-RCNN model with the ResNext-101 backbone considering the COCO metrics on six testing sets with different ratios of cloudless ( 75%), from six cloudless images and zero cloudy images (6:0) up to one cloudless image and five cloudy images (1:5). We found that using six cloudless images provided the best metrics [80% average precision (AP), 93% AP with a 0.5 intersection over union threshold (AP50)]. However, results were similar (74% AP, 88% AP50) even in extreme scenarios with abundant cloud presence (1:5 ratio). Our method provides a more adaptive and automatic way to map CPIS from time series, significantly reducing interference such as cloud cover, atmospheric effects, shadow, missing data, and lack of contrast with the surrounding vegetation.Instituto de Ciências Humanas (ICH)Departamento de Geografia (ICH GEA)Instituto de Ciências Exatas (IE)Departamento de Ciência da Computação (IE CIC
Deep semantic segmentation of center pivot irrigation systems from remotely sensed data
The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in precision agriculture due to its high efficiency in water consumption and low labor compared to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with growth forecast for the coming years. Therefore, the mapping of center pivot areas is a strategic factor for the estimation of agricultural production, ensuring food security, water resources management, and environmental conservation. In this regard, digital processing of satellite images is the primary tool allowing regional and continuous monitoring with low costs and agility. However, the automatic detection of CPIS using remote sensing images remains a challenge, and much research has adopted visual interpretation. Although CPIS presents a consistent circular shape in the landscape, these areas can have a high internal variation with different plantations that vary over time, which is difficult with just the spectral behavior. Deep learning using convolutional neural networks (CNNs) is an emerging approach that provokes a revolution in image segmentation, surpassing traditional methods, and achieving higher accuracy and efficiency. This research aimed to evaluate the use of deep semantic segmentation of CPIS from CNN-based algorithms using Landsat-8 surface reflectance images (seven bands). The developed methodology can be subdivided into the following steps: (a) Definition of three study areas with a high concentration of CPIS in Central Brazil; (b) acquisition of Landsat-8 images considering the seasonal variations of the rain and drought periods; (c) definition of CPIS datasets containing Landsat images and ground truth mask of 256×256 pixels; (d) training using three CNN architectures (U-net, Deep ResUnet, and SharpMask); (e) accuracy analysis; and (f) large image reconstruction using six stride values (8, 16, 32, 64, 128, and 256). The three methods achieved state-of-the-art results with a slight prevalence of U-net over Deep ResUnet and SharpMask (0.96, 0.95, and 0.92 Kappa coefficients, respectively). A novelty in this research was the overlapping pixel analysis in the large image reconstruction. Lower stride values had improvements quantified by the Receiver Operating Characteristic curve (ROC curve) and Kappa, and fewer errors in the frame edges were also perceptible. The overlapping images significantly improved the accuracy and reduced the error present in the edges of the classified frames. Additionally, we obtained greater accuracy results during the beginning of the dry season. The present study enabled the establishment of a database of center pivot images and an adequate methodology for mapping the center pivot in central Brazil