33 research outputs found

    ERG in Drosophila

    Get PDF

    Circadian rhythm entrainment of the jewel wasp, <i>Nasonia vitripennis</i>, by antagonistic interactions of multiple spectral inputs

    Get PDF
    Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp Nasonia vitripennis. Application of monochromatic light stimuli at different light intensities caused phase shifts in the wasp's circadian activity from which an action spectrum with three distinct peaks was derived. Electrophysiological recordings from the compound eyes and ocelli revealed the presence of three photoreceptor classes, with peak sensitivities at 340 nm (ultraviolet), 450 nm (blue) and 530 nm (green). An additional photoreceptor class in the ocelli with sensitivity maximum at 560-580 nm (red) was found. Whereas a simple sum of photoreceptor spectral sensitivities could not explain the action spectrum of the circadian phase shifts, modelling of the action spectrum indicates antagonistic interactions between pairs of spectral photoreceptors, residing in the compound eyes and the ocelli. Our findings imply that the photic entrainment mechanism in N. vitripennis encompasses the neural pathways for measuring the absolute luminance as well as the circuits mediating colour opponency.</p

    Behavioral responses of free-flying Drosophila melanogaster to shiny, reflecting surfaces

    Get PDF
    Active locomotion plays an important role in the life of many animals, permitting them to explore the environment, find vital resources, and escape predators. Most insect species rely on a combination of visual cues such as celestial bodies, landmarks, or linearly polarized light to navigate or orient themselves in their surroundings. In nature, linearly polarized light can arise either from atmospheric scattering or from reflections off shiny non-metallic surfaces like water. Multiple reports have described different behavioral responses of various insects to such shiny surfaces. Our goal was to test whether free-flying Drosophila melanogaster, a molecular genetic model organism and behavioral generalist, also manifests specific behavioral responses when confronted with such polarized reflections. Fruit flies were placed in a custom-built arena with controlled environmental parameters (temperature, humidity, and light intensity). Flight detections and landings were quantified for three different stimuli: a diffusely reflecting matt plate, a small patch of shiny acetate film, and real water. We compared hydrated and dehydrated fly populations, since the state of hydration may change the motivation of flies to seek or avoid water. Our analysis reveals for the first time that flying fruit flies indeed use vision to avoid flying over shiny surfaces

    The giant butterfly-moth <i>Paysandisia archon</i> has spectrally rich apposition eyes with unique light-dependent photoreceptor dynamics

    Get PDF
    The palm borer moth Paysandisia archon (Burmeister, 1880) (fam. Castniidae) is a large, diurnally active palm pest. Its compound eyes consist of ~ā€‰20,000 ommatidia and have apposition optics with interommatidial angles below 1Ā°. The ommatidia contain nine photoreceptor cells and appear structurally similar to those in nymphalid butterflies. Two morphological ommatidial types were identified. Using the butterfly numbering scheme, in type I ommatidia, the distal rhabdom consists exclusively of the rhabdomeres of photoreceptors R1ā€“2; the medial rhabdom has contributions from R1ā€“8. The rhabdom in type II ommatidia is distally split into two sub-rhabdoms, with contributions from photoreceptors R2, R3, R5, R6 and R1, R4, R7, R8, respectively; medially, only R3ā€“8 and not R1ā€“2 contribute to the fused rhabdom. In both types, the pigmented bilobed photoreceptors R9 contribute to the rhabdom basally. Their nuclei reside in one of the lobes. Upon light adaptation, in both ommatidial types, the rhabdoms secede from the crystalline cones and pigment granules invade the gap. Intracellular recordings identified four photoreceptor classes with peak sensitivities in the ultraviolet, blue, green and orange wavelength regions (at 360, 465, 550, 580 nm, respectively). We discuss the eye morphology and optics, the photoreceptor spectral sensitivities, and the adaptation to daytime activity from a phylogenetic perspective

    Classical lepidopteran wing scale colouration in the giant butterfly-moth

    Get PDF
    The palm borer moth Paysandisia archon (Castniidae; giant butterfly-moths) has brown dorsal forewings and strikingly orange-coloured dorsal hindwings with white spots surrounded by black margins. Here, we have studied the structure and pigments of the wing scales in the various coloured wing areas, applying light and electron microscopy and (micro)spectrophotometry, and we analysed the spatial reflection properties with imaging scatterometry. The scales in the white spots are unpigmented, those in the black and brown wing areas contain various amounts of melanin, and the orange wing scales contain a blue-absorbing ommochrome pigment. In all scale types, the upper lamina acts as a diffuser and the lower lamina as a thin film interference reflector, with thickness of about 200 nm. Scale stacking plays an important role in creating the strong visual signals: the colour of the white eyespots is created by stacks of unpigmented blue scales, while the orange wing colour is strongly intensified by stacking the orange scales

    Using carbon fibre microelectrodes to monitor the oxidative metabolism of blowfly eyes

    Get PDF
    The oxidative metabolism in animal tissues can be conveniently monitored by measuring tissue PO2 with a carbon fibre microelectrode. We have established a recording configuration in a living animal by insertion of a carbon fibre electrode (CFE) into the retina of a blowfly (Calliphora vicina ā€“ chalky). The current flowing over an exposed carbon disc at the tip of an insulated carbon fibre with 5 Āµm diameter is linearly proportional to PO2 when the PO2 was varied between 0 kPa (100% N2) and 100 kPa (100% O2) in the recording chamber. The slight changes in sensitivity of CFE during the recording time were corrected by calibrations performed at the start and at the end of the experiments. Exposure of the eye to bright light caused a drop in tissue PO2. Hypoxia increased with the stimulation time, reaching a maximum after about 20 s (āˆ†PO2=11.6 kPa). These results are in good agreement with direct measurements of O2 consumption in isolated eyes

    Investigation of blood flow and the effect of vasoactive substances in cutaneous blood vessels of Xenopus laevis

    Full text link
    In the present study, a preparation of frog skin was presented, which can be used to demonstrate the basic concepts of blood flow regulation in a very clear and attractive way to high school and university students. In a freshly euthanized Xenopus, a patch of abdominal skin was exposed from the internal side and viewed with a USB microscope while it remained connected to a functioning circulatory system. In this way, it was possible to obtain sharp images of arteries and veins and to visualize blood flow. This allows students to learn about the functional differences between arteries and veins and about the complexity of hemodynamics as well as the particularities of the amphibian pulmocutaneous circulation. Students can then quantitatively estimate the effect of norepinephrine and epinephrine on the diameter of blood vessels by simply superfusing the skin patch with a series of solutions of the two substances. They can also test the effect of Ī±-adrenergic receptor blockers, used to treat high blood pressure, on the norepinephrine-induced muscle tonus of blood vessels. </jats:p

    Drinking on the wing

    Full text link
    Many insects detect water bodies by observing the linearly polarised light which is reflected from the water surface. Polarotactic horseflies exhibit acrobatic manoeuvres above the water and are able to plunge on its surface, collect a droplet and fly away. This behaviour is extremely fast and has not yet been analysed. We recorded the fight patterns and kinematics of drinking horseflies using a pair of high-speed cameras. The animals of both sexes are attracted to water puddles where they make short, millisecond pitstops to collect a droplet of water that is then presumably drank ā€œon the wingā€. Before the collection, the flies perform several low-altitude flybys above the puddle. After a few passes, the fly suddenly reverses its body orientation, decelerates, briefly touches the water surface and immediately flies away, usually with a droplet carried between its front legs. During the approach fight, the horseflies fly low but do not show any angular preference. Thus, they view the reflections from the sky, sun, or vegetation with a wide band of ventral ommatidia. Polarotaxis in drinking horseflies is a very robust visually guided behaviour, which operates at a broad range of intensities and various spectral compositions of reflected light

    Singing greeting card beeper as a finger pulse sensor

    No full text
    corecore