810 research outputs found
Effect of friction in a toy model of granular compaction
We proposed a toy model of granular compaction which includes some resistance
due to granular arches. In this model, the solid/solid friction of contacting
grains is a key parameter and a slipping threshold Wc is defined. Realistic
compaction behaviors have been obtained. Two regimes separated by a critical
point Wc* of the slipping threshold have been emphasized : (i) a slow
compaction with lots of paralyzed regions, and (ii) an inverse logarithmic
dynamics with a power law scaling of grain mobility. Below the critical point
Wc*, the physical properties of this frozen system become independent of Wc.
Above the critical point Wc*, i.e. for low friction values, the packing
properties behave as described by the classical Janssen theory for silos
Elastic Energy, Fluctuations and Temperature for Granular Materials
We probe, using a model system, elastic and kinetic energies for sheared
granular materials. For large enough (pressure/Young's modulus) and
(kinetic energy density) elastic dominates kinetic energy, and
energy fluctuations become primarily elastic in nature. This regime has likely
been reached in recent experiments. We consider a generalization of the
granular temperature, , with both kinetic and elastic terms and that
changes smoothly from one regime to the other. This is roughly consistent
with a temperature adapted from equilibrium statistical mechanics.Comment: 4 pages, 4 figure
From the stress response function (back) to the sandpile `dip'
We relate the pressure `dip' observed at the bottom of a sandpile prepared by
successive avalanches to the stress profile obtained on sheared granular layers
in response to a localized vertical overload. We show that, within a simple
anisotropic elastic analysis, the skewness and the tilt of the response profile
caused by shearing provide a qualitative agreement with the sandpile dip
effect. We conclude that the texture anisotropy produced by the avalanches is
in essence similar to that induced by a simple shearing -- albeit tilted by the
angle of repose of the pile. This work also shows that this response function
technique could be very well adapted to probe the texture of static granular
packing.Comment: 8 pages, 8 figures, accepted version to appear in Eur. Phys. J.
Finite-size behaviour of the microcanonical specific heat
For models which exhibit a continuous phase transition in the thermodynamic
limit a numerical study of small systems reveals a non-monotonic behaviour of
the microcanonical specific heat as a function of the system size. This is in
contrast to a treatment in the canonical ensemble where the maximum of the
specific heat increases monotonically with the size of the system. A
phenomenological theory is developed which permits to describe this peculiar
behaviour of the microcanonical specific heat and allows in principle the
determination of microcanonical critical exponents.Comment: 15 pages, 7 figures, submitted to J. Phys.
Power-Law Behavior of Power Spectra in Low Prandtl Number Rayleigh-Benard Convection
The origin of the power-law decay measured in the power spectra of low
Prandtl number Rayleigh-Benard convection near the onset of chaos is addressed
using long time numerical simulations of the three-dimensional Boussinesq
equations in cylindrical domains. The power-law is found to arise from
quasi-discontinuous changes in the slope of the time series of the heat
transport associated with the nucleation of dislocation pairs and roll
pinch-off events. For larger frequencies, the power spectra decay exponentially
as expected for time continuous deterministic dynamics.Comment: (10 pages, 6 figures
Isolation and Characterization of Eight Polymorphic Microsatellites for the Spotted Spiny Lobster, Panulirus guttatus
Microsatellite sequences were isolated from enriched genomic libraries of the spotted spiny lobster, Panulirus guttatus using 454 pyrosequencing. Twenty-nine previously developed polymerase chain reaction primer pairs of Panulirus argus microsatellite loci were also tested for cross-species amplification in Panulirus guttatus. In total, eight consistently amplifying, and polymorphic loci were characterized for 57 individuals collected in the Florida Keys and Bermuda. The number of alleles per locus ranged from 8 to 20 and observed heterozygosities ranged from 0.409 to 0.958. Significant deviations from Hardy–Weinberg equilibrium were found in one locus from Florida and three loci from Bermuda. Quality control testing indicated that all loci were easy to score, highly polymorphic and showed no evidence of linkage disequilibrium. Null alleles were detected in three loci with moderate frequencies ranging from (20% to 22%). These eight microsatellites provide novel molecular markers for future conservation genetics research of P. guttatus
Angoricity and compactivity describe the jamming transition in soft particulate matter
The application of concepts from equilibrium statistical mechanics to
out-of-equilibrium systems has a long history of describing diverse systems
ranging from glasses to granular materials. For dissipative jammed systems--
particulate grains or droplets-- a key concept is to replace the energy
ensemble describing conservative systems by the volume-stress ensemble. Here,
we test the applicability of the volume-stress ensemble to describe the jamming
transition by comparing the jammed configurations obtained by dynamics with
those averaged over the ensemble as a probe of ergodicity. Agreement between
both methods suggests the idea of "thermalization" at a given angoricity and
compactivity. We elucidate the thermodynamic order of the jamming transition by
showing the absence of critical fluctuations in static observables like
pressure and volume. The approach allows to calculate observables such as the
entropy, volume, pressure, coordination number and distribution of forces to
characterize the scaling laws near the jamming transition from a statistical
mechanics viewpoint.Comment: 27 pages, 13 figure
- …