407 research outputs found

    Positron Emission Tomography and Magnetic Resonance Imaging of Cellular Inflammation in Patients with Abdominal Aortic Aneurysms.

    Get PDF
    OBJECTIVES: Inflammation is critical in the pathogenesis of abdominal aortic aneurysm (AAA) disease. Combined (18)F-fludeoxyglucose ((18)F-FDG) positron emission tomography with computed tomography (PET-CT) and ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) are non-invasive methods of assessing tissue inflammation. The aim of this study was to compare these techniques in patients with AAA. MATERIALS AND METHODS: Fifteen patients with asymptomatic AAA with diameter 46 ± 7 mm underwent PET-CT with (18)F-FDG, and T2*-weighted MRI before and 24 hours after administration of USPIO. The PET-CT and MRI data were then co-registered. Standardised uptake values (SUVs) were calculated to measure (18)F-FDG activity, and USPIO uptake was determined using the change in R2*. Comparisons between the techniques were made using a quadrant analysis and a voxel-by-voxel evaluation. RESULTS: When all areas of the aneurysm were evaluated, there was a modest correlation between the SUV on PET-CT and the change in R2* on USPIO-enhanced MRI (n = 70,345 voxels; r = .30; p < .0001). Although regions of increased (18)F-FDG and USPIO uptake co-localised on occasion, this was infrequent (kappa statistic 0.074; 95% CI 0.026-0.122). (18)F-FDG activity was commonly focused in the shoulder region whereas USPIO uptake was more apparent in the main body of the aneurysm. Maximum SUV was lower in patients with mural USPIO uptake. CONCLUSIONS: Both (18)F-FDG PET-CT and USPIO-MRI uptake identify vascular inflammation associated with AAA. Although they demonstrate a modest correlation, there are distinct differences in the pattern and distribution of uptake, suggesting a differential detection of macrophage glycolytic and phagocytic activity respectively.This research was supported by grants from the National Institutes of Health Research (NIHR) Efficacy and Mechanism Evaluation Programme (11/20/03), the British Heart Foundation (PG/09/083) and the Evelyn Trust (09/22). Dr. McBride is supported by the Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine. Dr. Joshi is supported by Chief Scientist Office (ETM/160). Dr. van Beek is supported by the Scottish Imaging Network e a Platform of Scientific Excellence. The work of Dr. Rudd is part-supported by the NIHR Cambridge Biomedical Research Centre, the British Heart Foundation and the Wellcome Trust. Dr. Newby is supported by the British Heart Foundation (CH/09/002). The Wellcome Trust Clinical Research Facility and the Clinical Research Imaging Centre are supported by National Health Service Research Scotland through National Health Service Lothian.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ejvs.2015.12.01

    Rapid diagnosis of experimental meningitis by bacterial heat production in cerebrospinal fluid

    Get PDF
    BACKGROUND: Calorimetry is a nonspecific technique which allows direct measurement of heat generated by biological processes in the living cell. We evaluated the potential of calorimetry for rapid detection of bacterial growth in cerebrospinal fluid (CSF) in a rat model of bacterial meningitis. METHODS: Infant rats were infected on postnatal day 11 by direct intracisternal injection with either Streptococcus pneumoniae, Neisseria meningitidis or Listeria monocytogenes. Control animals were injected with sterile saline or heat-inactivated S. pneumoniae. CSF was obtained at 18 hours after infection for quantitative cultures and heat flow measurement. For calorimetry, 10 microl and 1 microl CSF were inoculated in calorimetry ampoules containing 3 ml trypticase soy broth (TSB). RESULTS: The mean bacterial titer (+/- SD) in CSF was 1.5 +/- 0.6 x 108 for S. pneumoniae, 1.3 +/- 0.3 x 106 for N. meningitidis and 3.5 +/- 2.2 x 104 for L. monocytogenes. Calorimetric detection time was defined as the time until heat flow signal exceeded 10 microW. Heat signal was detected in 10-microl CSF samples from all infected animals with a mean (+/- SD) detection time of 1.5 +/- 0.2 hours for S. pneumoniae, 3.9 +/- 0.7 hours for N. meningitidis and 9.1 +/- 0.5 hours for L. monocytogenes. CSF samples from non-infected animals generated no increasing heat flow (<10 microW). The total heat was the highest in S. pneumoniae ranging from 6.7 to 7.5 Joules, followed by L. monocytogenes (5.6 to 6.1 Joules) and N. meningitidis (3.5 to 4.4 Joules). The lowest detectable bacterial titer by calorimetry was 2 cfu for S. pneumoniae, 4 cfu for N. meningitidis and 7 cfu for L. monocytogenes. CONCLUSION: By means of calorimetry, detection times of <4 hours for S. pneumoniae and N. meningitidis and <10 hours for Listeria monocytogenes using as little as 10 microl CSF were achieved. Calorimetry is a new diagnostic method allowing rapid and accurate diagnosis of bacterial meningitis from a small volume of CSF

    Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection.

    Get PDF
    BACKGROUND: Antigenic characterization of influenza viruses is typically based on hemagglutination inhibition (HI) assay data for viral isolates tested against strain-specific postinfection ferret antisera. Here, similar virus characterizations were performed using serological data from humans with primary influenza A(H3N2) infection. METHODS: We screened sera collected between 1995 and 2011 from children between 9 and 24 months of age for influenza virus antibodies, performed HI tests for the positive sera against 23 influenza viruses isolated between 1989 and 2011, and measured HI titers of antisera against influenza A(H3N2) from 24 ferrets against the same panel of viruses. RESULTS: Of the 17 positive human sera, 6 had a high response, showing HI patterns that would be expected from primary infection antisera, while 11 sera had lower, more dispersed patterns of reactivity that are not easily explained. The antigenic map based on the high-response human HI data was similar to the map created using ferret data. CONCLUSIONS: Although the overall structure of the ferret and human antigenic maps is similar, local differences in virus positions indicate that the human and ferret immune system might see antigenic properties of viruses differently. Further studies are needed to establish the degree of similarity between serological patterns in ferret and human data.This work was supported by the award of a Fellowship in Biomedical Informatics from the Medical Research Council UK [grant number MR/K021885/1] and a Junior Research Fellowship from Homerton College Cambridge to J.M.F.; a Medical Research Council UK studentship [number MR/K50127X/1 to S.H.W.]; the EU FP7 project PREPARE [grant number 602525 to P.L.A.F.]; the National Institute of Allergy and Infectious Diseases, National Institutes of Health [contract number HHSN272201400008C to R.A.M.F and the Center for Pathogen Evolution]; and the EU grant FLUNIVAC [grant number 602604 to G.F.R.].This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/infdis/jiv36

    Excluding pulmonary embolism in primary care using the Wells-rule in combination with a point-of care D-dimer test: a scenario analysis

    Get PDF
    ABSTRACT: BACKGROUND: In secondary care the Wells clinical decision rule (CDR) combined with a quantitative D-dimer test can exclude pulmonary embolism (PE) safely. The introduction of point-of-care (POC) D-dimer tests facilitates a similar diagnostic strategy in primary care. We estimated failure-rate and efficiency of a diagnostic strategy using the Wells-CDR combined with a POC-D-dimer test for excluding PE in primary care. We considered ruling out PE safe if the failure rate was <2% with a maximum upper confidence limit of 2.7%. METHODS: We performed a scenario-analysis on data of 2701 outpatients suspected of PE. We used test characteristics of two qualitative POC-D-dimer tests, as derived from a meta-analysis and combined these with the Wells-CDR-score. RESULTS: In scenario 1 (SimpliRed-D-dimer sensitivity 85%, specificity 74%) PE was excluded safely in 23.8% of patients but only by lowering the cut-off value of the Wells rule to <2. (failure rate: 1.4%, 95% CI 0.6-2.6%) In scenario 2 (Simplify-D-dimer sensitivity 87%, specificity 62%) PE was excluded safely in 12.4% of patients provided that the Wells-cut-off value was set at 0. (failure rate: 0.9%, 95% CI 0.2-2.6%) CONCLUSION: Theoretically a diagnostic strategy using the Wells-CDR combined with a qualitative POC-D-dimer test can be used safely to exclude PE in primary care albeit with only moderate efficienc

    3.0 T cardiovascular magnetic resonance in patients treated with coronary stenting for myocardial infarction: evaluation of short term safety and image quality

    Get PDF
    Purpose To evaluate safety and image quality of cardiovascular magnetic resonance (CMR) at 3.0 T in patients with coronary stents after myocardial infarction (MI), in comparison to the clinical standard at 1.5 T. Methods Twenty-five patients (21 men; 55 ± 9 years) with first MI treated with primary stenting, underwent 18 scans at 3.0 T and 18 scans at 1.5 T. Twenty-four scans were performed 4 ± 2 days and 12 scans 125 ± 23 days after MI. Cine (steady-state free precession) and late gadolinium-enhanced (LGE, segmented inversion-recovery gradient echo) images were acquired. Patient safety and image artifacts were evaluated, and in 16 patients stent position was assessed during repeat catheterization. Additionally, image quality was scored from 1 (poor quality) to 4 (excellent quality). Results There were no clinical events within 30 days of CMR at 3.0 T or 1.5 T, and no stent migration occurred. At 3.0 T, image quality of cine studies was clinically useful in all, but not sufficient for quantitative analysis in 44% of the scans, due to stent (6/18 scans), flow (7/18 scans) and/or dark band artifacts (8/18 scans). Image quality of LGE images at 3.0 T was not sufficient for quantitative analysis in 53%, and not clinically useful in 12%. At 1.5 T, all cine and LGE images were quantitatively analyzable. Conclusion 3.0 T is safe in the acute and chronic phase after MI treated with primary stenting. Although cine imaging at 3.0 T is suitable for clinical use, quantitative analysis and LGE imaging is less reliable than at 1.5 T. Further optimization of pulse sequences at 3.0 T is essential

    Bridging the gap between the economic evaluation literature and daily practice in occupational health: a qualitative study among decision-makers in the healthcare sector

    Get PDF
    Background: Continued improvements in occupational health can only be ensured if decisions regarding the implementation and continuation of occupational health and safety interventions (OHS interventions) are based on the best available evidence. To ensure that this is the case, scientific evidence should meet the needs of decision-makers. As a first step in bridging the gap between the economic evaluation literature and daily practice in occupational health, this study aimed to provide insight into the occupational health decision-making process and information needs of decision-makers.Methods: An exploratory qualitative study was conducted with a purposeful sample of occupational health decision-makers in the Ontario healthcare sector. Eighteen in-depth interviews were conducted to explore the process by which occupational health decisions are made and the importance given to the financial implications of OHS interventions. Twenty-five structured telephone interviews were conducted to explore the sources of information used during the decision-making process, and decision-makers' knowledge on economic evaluation methods. In-depth interview data were analyzed according to the constant comparative method. For the structured telephone interviews, summary statistics were prepared.Results: The occupational health decision-making process generally consists of three stages: initiation stage, establishing the need for an intervention; pre-implementation stage, developing an intervention and its business case in order to receive senior management approval; and implementation and evaluation stage, implementing and evaluating an intervention. During this process, information on the financial implications of OHS interventions was found to be of great importance, especially the employer's costs and benefits. However, scientific evidence was rarely consulted, sound ex-post program evaluations were hardly ever performed, and there seemed to be a need to advance the economic evaluation skill set of decision-makers.Conclusions: Financial information is particularly important at the front end of implementation decisions, and can be a key deciding factor of whether to go forward with a new OHS intervention. In addition, it appears that current practice in occupational health in the healthcare sector is not solidly grounded in evidence-based decision-making and strategies should be developed to improve this. © 2013 van Dongen et al.; licensee BioMed Central Ltd

    Increased aortic stiffness and blood pressure in non-classic Pompe disease

    Get PDF
    Vascular abnormalities and glycogen accumulation in vascular smooth muscle fibres have been described in Pompe disease. Using carotid-femoral pulse wave velocity (cfPWV), the gold standard methodology for determining aortic stiffness, we studied whether aortic stiffness is increased in patients with Pompe disease. Eighty-four adult Pompe patients and 179 age- and gender-matched volunteers participated in this cross-sectional case-controlled study. Intima media thickness and the distensibility of the right common carotid artery were measured using a Duplex scanner. Aortic augmentation index, central pulse pressure, aortic reflexion time and cfPWV were assessed using the SphygmoCor¼ system. CfPWV was higher in patients than in volunteers (8.8 versus 7.4 m/s, p < 0.001). This difference was still present after adjustment for age, gender, mean arterial blood pressure (MAP), heart rate and diabetes mellitus (p = 0.001), and was shown by subgroup analysis to apply to the 40-59 years age group (p = 0.004) and 60+ years age group (p = 0.01), but not to younger age groups (p = 0.99). Except for a shorter aortic reflexion time (p = 0.02), indirect indicators of arterial stiffness did not differ between patients and volunteers. Relative to volunteers (20 %), more Pompe patients had a history of hypertension (36 %, p = 0.005), and the MAP was higher than in volunteers (100 versus 92 mmHg, p < 0.001). This study shows that patients with non-classic Pompe disease have increased aortic stiffness and blood pressure. Whether this is due to glycogen accumulation requires further investigation. To reduce the potential risk of cardiovascular diseases, we recommend that blood pressure and other common cardiovascular risk factors are monitored regularly

    Principal component approach in variance component estimation for international sire evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dairy cattle breeding industry is a highly globalized business, which needs internationally comparable and reliable breeding values of sires. The international Bull Evaluation Service, Interbull, was established in 1983 to respond to this need. Currently, Interbull performs multiple-trait across country evaluations (MACE) for several traits and breeds in dairy cattle and provides international breeding values to its member countries. Estimating parameters for MACE is challenging since the structure of datasets and conventional use of multiple-trait models easily result in over-parameterized genetic covariance matrices. The number of parameters to be estimated can be reduced by taking into account only the leading principal components of the traits considered. For MACE, this is readily implemented in a random regression model.</p> <p>Methods</p> <p>This article compares two principal component approaches to estimate variance components for MACE using real datasets. The methods tested were a REML approach that directly estimates the genetic principal components (direct PC) and the so-called bottom-up REML approach (bottom-up PC), in which traits are sequentially added to the analysis and the statistically significant genetic principal components are retained. Furthermore, this article evaluates the utility of the bottom-up PC approach to determine the appropriate rank of the (co)variance matrix.</p> <p>Results</p> <p>Our study demonstrates the usefulness of both approaches and shows that they can be applied to large multi-country models considering all concerned countries simultaneously. These strategies can thus replace the current practice of estimating the covariance components required through a series of analyses involving selected subsets of traits. Our results support the importance of using the appropriate rank in the genetic (co)variance matrix. Using too low a rank resulted in biased parameter estimates, whereas too high a rank did not result in bias, but increased standard errors of the estimates and notably the computing time.</p> <p>Conclusions</p> <p>In terms of estimation's accuracy, both principal component approaches performed equally well and permitted the use of more parsimonious models through random regression MACE. The advantage of the bottom-up PC approach is that it does not need any previous knowledge on the rank. However, with a predetermined rank, the direct PC approach needs less computing time than the bottom-up PC.</p
    • 

    corecore