111 research outputs found

    Towards the Design of Power Switches Utilizing HTS Material

    Get PDF
    Conventional superconducting switches for power applications, which operate at liquid helium temperature, generally utilize Nb-Ti superconductor in a cupro-nickel matrix. For superconducting circuits based on High Temperature Superconductors (HTS) that work at higher temperatures, the associated superconducting switches must also be based on HTS. This paper addresses the issues concerning the requirements and the appropriate design of HTS switches, including approaches to fast triggering

    The dipolar endofullerene HF@C60

    Get PDF
    The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage while minimizing escape of HF. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H-19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature-dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole

    Quantum rotation of ortho and para-water encapsulated in a fullerene cage

    No full text
    Inelastic neutron scattering, far-infrared spectroscopy, and cryogenic nuclear magnetic resonance are used to investigate the quantized rotation and ortho–para conversion of single water molecules trapped inside closed fullerene cages. The existence of metastable ortho-water molecules is demonstrated, and the interconversion of ortho-and para-water spin isomers is tracked in real time. Our investigation reveals that the ground state of encapsulated ortho water has a lifted degeneracy, associated with symmetry-breaking of the water environmen

    Some aspects of thermometry and heat transfer below 0.3 K

    No full text
    Applied Science

    Transport IV characterisation of MgB2 conductor at a bend radius of 50mm

    No full text
    Performance of state of the art MgB2 multifilamentary conductor at a required bend radius is essential for many applications including but not limited to magnets and motors. The characterisation is generally done with benchmark transport Ic but further detail can be seen in IV characteristics which are undertaken in this paper. Two conductors with the same architecture but different diameters, 0.89 and 0.45 mm were measured from 32 K to 20 K in self-field in conditions of as received and deformed to a 50 mm bend diameter, corresponding to strains of 1.4 % and 0.7 % respectively. The qualifying 0.45mm conductor was further measured in background fields up to 3 T. The smaller diameter wire was found to have no signs of degradation of critical behaviour in Ic or IV characteristic

    Cryogenic refrigeration below 70k

    No full text

    Reduction of the effects of asymmetrical convection in titled pulse-tube refrigerators

    No full text
    Several simple ways are suggested for reducing convective heat losses associated with tilting a Pulse Tube Refrigerator thereby minimising loss of cooling power. These include the use of one or more longitudinal baffles, and changing the cross section of the pulse tube from circular to elliptical
    • …
    corecore