48,676 research outputs found
Pathways to double ionization of atoms in strong fields
We discuss the final stages of double ionization of atoms in a strong
linearly polarized laser field within a classical model. We propose that all
trajectories leading to non-sequential double ionization pass close to a saddle
in phase space which we identify and characterize. The saddle lies in a two
degree of freedom subspace of symmetrically escaping electrons. The
distribution of longitudinal momenta of ions as calculated within the subspace
shows the double hump structure observed in experiments. Including a symmetric
bending mode of the electrons allows us to reproduce the transverse ion
momenta. We discuss also a path to sequential ionization and show that it does
not lead to the observed momentum distributions.Comment: 10 pages, 10 figures; fig.6 and 7 exchanged in the final version
accepted for publication in Phys. Rev.
Transmission needs across a fully renewable European power system
The residual load and excess power generation of 27 European countries with a
100% penetration of variable renewable energy sources are explored in order to
quantify the benefit of power transmission between countries. Estimates are
based on extensive weather data, which allows for modelling of hourly
mismatches between the demand and renewable generation from wind and solar
photovoltaics. For separated countries, balancing is required to cover around
24% of the total annual energy consumption. This number can be reduced down to
15% once all countries are networked together with uncon- strained
interconnectors. The reduction represents the maximum possible benefit of
transmission for the countries. The total Net Transfer Capacity of the
unconstrained interconnectors is roughly twelve times larger than current
values. However, constrained interconnector capacities six times larger than
the current values are found to provide 97% of the maximum possible benefit of
cooperation. This motivates a detailed investigation of several constrained
transmission capacity layouts to determine the export and import capabilities
of countries participating in a fully renewable European electricity system
Tropical Pacific spatial trend patterns in observed sea level: internal variability and/or anthropogenic signature?
In this study we focus on the sea level trend pattern observed by satellite altimetry in the tropical Pacific over the 1993–2009 time span (i.e. 17 yr). Our objective is to investigate whether this 17-yr-long trend pattern was different before the altimetry era, what was its spatio-temporal variability and what have been its main drivers. We try to discriminate the respective roles of the internal variability of the climate system and of external forcing factors, in particular anthropogenic emissions (greenhouse gases and aerosols). On the basis of a 2-D past sea level reconstruction over 1950–2009 (based on a combination of observations and ocean modelling) and multi-century control runs (i.e. with constant, preindustrial external forcing) from eight coupled climate models, we have investigated how the observed 17-yr sea level trend pattern evolved during the last decades and centuries, and try to estimate the characteristic time scales of its variability. For that purpose, we have computed sea level trend patterns over successive 17-yr windows (i.e. the length of the altimetry record), both for the 60-yr long reconstructed sea level and the model runs. We find that the 2-D sea level reconstruction shows spatial trend patterns similar to the one observed during the altimetry era. The pattern appears to have fluctuated with time with a characteristic time scale of the order of 25–30 yr. The same behaviour is found in multi-centennial control runs of the coupled climate models. A similar analysis is performed with 20th century coupled climate model runs with complete external forcing (i.e. solar plus volcanic variability and changes in anthropogenic forcing). Results suggest that in the tropical Pacific, sea level trend fluctuations are dominated by the internal variability of the ocean–atmosphere coupled system. While our analysis cannot rule out any influence of anthropogenic forcing, it concludes that the latter effect in that particular region is stillhardly detectable
Non-sequential triple ionization in strong fields
We consider the final stage of triple ionization of atoms in a strong
linearly polarized laser field. We propose that for intensities below the
saturation value for triple ionization the process is dominated by the
simultaneous escape of three electrons from a highly excited intermediate
complex. We identify within a classical model two pathways to triple
ionization, one with a triangular configuration of electrons and one with a
more linear one. Both are saddles in phase space. A stability analysis
indicates that the triangular configuration has the larger cross sections and
should be the dominant one. Trajectory simulations within the dominant symmetry
subspace reproduce the experimentally observed distribution of ion momenta
parallel to the polarization axis.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.
Smectic Phases with Cubic Symmetry: The Splay Analog of the Blue Phase
We report on a construction for smectic blue phases, which have quasi-long
range smectic translational order as well as long range cubic or hexagonal
order. Our proposed structures fill space with a combination of minimal surface
patches and cylindrical tubes. We find that for the right range of material
parameters, the favorable saddle-splay energy of these structures can stabilize
them against uniform layered structures.Comment: 4 pages, 4 eps figures, RevTe
Correlated electron emission in laser-induced nonsequence double ionization of Helium
In this paper, we have investigated the correlated electron emission of the
nonsequence double ionization (NSDI) in an intense linearly polarized field.
The theoretical model we employed is the semiclassical rescattering model, the
model atom we used is the helium. We find a significant correlation between
magnitude and direction of the momentum of two emission electrons, and give a
good explanation for this striking phenomenon by observing the classical
collisional trajectories. We argue that this correlation phenomenon is
universal in NSDI process, as revealed by the recent experiment on the argon.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.
Detecting Stellar Spots by Gravitational Microlensing
During microlensing events with a small impact parameter, the amplification
of the source flux is sensitive to the surface brightness distribution of the
source star. Such events provide a means for studying the surface structure of
target stars in the ongoing microlensing surveys, most efficiently for giants
in the Galactic bulge. In this work we demonstrate the sensitivity of
point-mass microlensing to small spots with radii source
radii. We compute the amplification deviation from the light curve of a
spotless source and explore its dependence on lensing and spot parameters.
During source-transit events spots can cause deviations larger than 2%, and
thus be in principle detectable. Maximum relative deviation usually occurs when
the lens directly crosses the spot. Its numerical value for a dark spot with
sufficient contrast is found to be roughly equal to the fractional radius of
the spot, i.e., up to 20% in this study. Spots can also be efficiently detected
by the changes in sensitive spectral lines during the event. Notably, the
presence of a spot can mimic the effect of a low-mass companion of the lens in
some events.Comment: 18 pages with 7 Postscript figures, to appear in ApJ, January 2000;
discussion expanded, references added, minor revisions in tex
Synaptic partner prediction from point annotations in insect brains
High-throughput electron microscopy allows recording of lar- ge stacks of
neural tissue with sufficient resolution to extract the wiring diagram of the
underlying neural network. Current efforts to automate this process focus
mainly on the segmentation of neurons. However, in order to recover a wiring
diagram, synaptic partners need to be identi- fied as well. This is especially
challenging in insect brains like Drosophila melanogaster, where one
presynaptic site is associated with multiple post- synaptic elements. Here we
propose a 3D U-Net architecture to directly identify pairs of voxels that are
pre- and postsynaptic to each other. To that end, we formulate the problem of
synaptic partner identification as a classification problem on long-range edges
between voxels to encode both the presence of a synaptic pair and its
direction. This formulation allows us to directly learn from synaptic point
annotations instead of more ex- pensive voxel-based synaptic cleft or vesicle
annotations. We evaluate our method on the MICCAI 2016 CREMI challenge and
improve over the current state of the art, producing 3% fewer errors than the
next best method
- …