4,067 research outputs found

    Critical behavior of the spin correlation function in Ashkin-Teller and Baxter models with a line defect

    Full text link
    We consider the critical spin-spin correlation function of the Ashkin-Teller and Baxter models. By using path-integral techniques in the continuum description of these models in terms of fermion fields, we show that the correlation decays with distance with the same critical exponent as the Ising model. The procedure is straightforwardly extended to take into account the presence of a line defect. Thus we find that in these altered models the critical index of the magnetic correlation on the defect coincides with the one of the defective 2D Ising or Bariev's model.Comment: Expanded explanations. Added references. Accepted for publication in Phys. Rev.

    A new integrable two parameter model of strongly correlated electrons in one dimension

    Full text link
    A new one-dimensional fermion model depending on two independent interaction parameters is formulated and solved exactly by the Bethe ansatz method. The Hamiltonian of the model contains the Hubbard interaction and correlated hopping as well as pair hopping terms. The density-density and pair correlations are calculated which manifest superconducting properties in certain regimes of the phase diagram.Comment: 8 pages, latex, 2 postscript figure

    Exact Solution of a Vertex Model with Unlimited Number of States Per Bond

    Full text link
    The exact solution is obtained for the eigenvalues and eigenvectors of the row-to-row transfer matrix of a two-dimensional vertex model with unlimited number of states per bond. This model is a classical counterpart of a quantum spin chain with an unlimited value of spin. This quantum chain is studied using general predictions of conformal field theory. The long-distance behaviour of some ground-state correlation functions is derived from a finite-size analysis of the gapless excitations.Comment: 11pages, 6 figure

    Integrable model of interacting XX and Fateev-Zamolodchikov chains

    Full text link
    We consider the exact solution of a model of correlated particles, which is presented as a system of interacting XX and Fateev-Zamolodchikov chains. This model can also be considered as a generalization of the multiband anisotropic tJt-J model in the case we restrict the site occupations to at most two electrons. The exact solution is obtained for the eigenvalues and eigenvectors using the Bethe-ansatz method.Comment: 10 pages, no figure

    Critical behavior at the interface between two systems belonging to different universality classes

    Full text link
    We consider the critical behavior at an interface which separates two semi-infinite subsystems belonging to different universality classes, thus having different set of critical exponents, but having a common transition temperature. We solve this problem analytically in the frame of mean-field theory, which is then generalized using phenomenological scaling considerations. A large variety of interface critical behavior is obtained which is checked numerically on the example of two-dimensional q-state Potts models with q=2 to 4. Weak interface couplings are generally irrelevant, resulting in the same critical behavior at the interface as for a free surface. With strong interface couplings, the interface remains ordered at the bulk transition temperature. More interesting is the intermediate situation, the special interface transition, when the critical behavior at the interface involves new critical exponents, which however can be expressed in terms of the bulk and surface exponents of the two subsystems. We discuss also the smooth or discontinuous nature of the order parameter profile.Comment: 16 pages, 9 figures, published version, minor changes, some references adde

    Three-Dimensional Vertex Model in Statistical Mechanics, from Baxter-Bazhanov Model

    Get PDF
    We find that the Boltzmann weight of the three-dimensional Baxter-Bazhanov model is dependent on four spin variables which are the linear combinations of the spins on the corner sites of the cube and the Wu-Kadanoff duality between the cube and vertex type tetrahedron equations is obtained explicitly for the Baxter-Bazhanov model. Then a three-dimensional vertex model is obtained by considering the symmetry property of the weight function, which is corresponding to the three-dimensional Baxter-Bazhanov model. The vertex type weight function is parametrized as the dihedral angles between the rapidity planes connected with the cube. And we write down the symmetry relations of the weight functions under the actions of the symmetry group GG of the cube. The six angles with a constrained condition, appeared in the tetrahedron equation, can be regarded as the six spectrums connected with the six spaces in which the vertex type tetrahedron equation is defined.Comment: 29 pages, latex, 8 pasted figures (Page:22-29

    Phase transition of clock models on hyperbolic lattice studied by corner transfer matrix renormalization group method

    Get PDF
    Two-dimensional ferromagnetic N-state clock models are studied on a hyperbolic lattice represented by tessellation of pentagons. The lattice lies on the hyperbolic plane with a constant negative scalar curvature. We observe the spontaneous magnetization, the internal energy, and the specific heat at the center of sufficiently large systems, where the fixed boundary conditions are imposed, for the cases N>=3 up to N=30. The model with N=3, which is equivalent to the 3-state Potts model on the hyperbolic lattice, exhibits the first order phase transition. A mean-field like phase transition of the second order is observed for the cases N>=4. When N>=5 we observe the Schottky type specific heat below the transition temperature, where its peak hight at low temperatures scales as N^{-2}. From these facts we conclude that the phase transition of classical XY-model deep inside the hyperbolic lattices is not of the Berezinskii-Kosterlitz-Thouless type.Comment: REVTeX style, 4 pages, 6 figures, submitted to Phys. Rev.

    Eigenvectors of Baxter-Bazhanov-Stroganov \tau^{(2)}(t_q) model with fixed-spin boundary conditions

    Full text link
    The aim of this contribution is to give the explicit formulas for the eigenvectors of the transfer-matrix of Baxter-Bazhanov-Stroganov (BBS) model (N-state spin model) with fixed-spin boundary conditions. These formulas are obtained by a limiting procedure from the formulas for the eigenvectors of periodic BBS model. The latter formulas were derived in the framework of the Sklyanin's method of separation of variables. In the case of fixed-spin boundaries the corresponding T-Q Baxter equations for the functions of separated variables are solved explicitly. As a particular case we obtain the eigenvectors of the Hamiltonian of Ising-like Z_N quantum chain model.Comment: 14 pages, paper submitted to Proceedings of the International Workshop "Classical and Quantum Integrable Systems" (Dubna, January, 2007

    Interpolation between Hubbard and supersymmetric t-J models. Two-parameter integrable models of correlated electrons

    Full text link
    Two new one-dimensional fermionic models depending on two independent parameters are formulated and solved exactly by the Bethe-ansatz method. These models connect continuously the integrable Hubbard and supersymmetric t-J models.Comment: 11pages and no figure

    The application of the global isomorphism to the surface tension of the liquid-vapor interface of the Lennard-Jones fluids

    Full text link
    In this communication we show that the surface tension of the real fluids of the Lennard-Jones type can be obtained from the surface tension of the lattice gas (Ising model) on the basis of the global isomorphism approach developed earlier for the bulk properties.Comment: 8 pages, 6 figure
    corecore