Two-dimensional ferromagnetic N-state clock models are studied on a
hyperbolic lattice represented by tessellation of pentagons. The lattice lies
on the hyperbolic plane with a constant negative scalar curvature. We observe
the spontaneous magnetization, the internal energy, and the specific heat at
the center of sufficiently large systems, where the fixed boundary conditions
are imposed, for the cases N>=3 up to N=30. The model with N=3, which is
equivalent to the 3-state Potts model on the hyperbolic lattice, exhibits the
first order phase transition. A mean-field like phase transition of the second
order is observed for the cases N>=4. When N>=5 we observe the Schottky type
specific heat below the transition temperature, where its peak hight at low
temperatures scales as N^{-2}. From these facts we conclude that the phase
transition of classical XY-model deep inside the hyperbolic lattices is not of
the Berezinskii-Kosterlitz-Thouless type.Comment: REVTeX style, 4 pages, 6 figures, submitted to Phys. Rev.