1,801 research outputs found

    Raman Scattering Characterization of the Microscopic Structure of Semi-Insulating Polycrystalline Si Thin Films

    Get PDF
    Raman scattering experiments were carried out to study the microscopic structure of semi-insulating polycrystalline Si (SIPOS) thin films prepared by low-pressure chemical vapor deposition. The samples contain 18, 25, and 30 at. % of oxygen and after growth they were annealed at 900 and 1000°C for 30 min. The Raman spectra show in the vibrational region of the optical frequencies of Si two bands, which arise from scattering in crystalline grains and disordered forms of Si. The behavior of these bands as a function of oxygen content and annealing temperatures was established in detail. The crystallinelike band peaks below the transverse optical frequency of Si at zone center and is broadened with respect to the Raman line of a Si wafer. From the broadenings, estimates of grain sizes are obtained. The band due to the disordered form of Si appears at frequencies above those of an extended network of amorphous Si. A model for the SIPOS microscopic structure is proposed in which the disordered Si corresponds to the surface layers of the crystalline grains. The latter are embedded in an amorphous SiO2 matrix. Quantitative estimates of the contributions of the ordered and disordered phases of Si to the SIPOS structure are attempted. The Raman results provide additional experimental evidence that the crystallization temperature of Si increases under the presence of oxygen

    Strains in Si-onSiO\u3csub\u3e2\u3c/sub\u3e Structures Formed By Oxygen Implantation: Raman Scattering Characterization

    Get PDF
    Low-temperature Raman scattering measurements were carried out to characterize Si-on-SiO2 structures formed by oxygen implantation and subsequent furnace or lamp annealing. The experiments were conducted with 413.1 nm laser light to probe only the thin Si layers at the top of the structures. The Raman spectra of the furnace-annealed samples are red shifted and broadened when compared with a virgin Si surface. The shifts and broadenings decrease with increasing annealing temperatures but they are still present in samples annealed above 1250°C for 3 h. No shifts or broadenings affect the Raman peaks of the layers, which were lamp annealed at 1405°C for half an hour. The red shifts indicate that the recrystallized Si layers are under tensile strains, whose origin is attributed to oxide precipitates. Quantitative estimates of the strains and associated stresses are obtained from the measured Raman shifts

    Luminescence in Slipped and Dislocation-Free Laser-Annealed Silicon

    Get PDF
    Photoluminescence of cw laser-annealed silicon shows a dramatic difference in electronic behavior of the reconstructed material depending upon either creation or suppression of dislocations. Beyond a critical exposure time slip appears, and the luminescence of these samples is dominated by dislocation-related defect levels

    Improved Gas Sensing Performance of ALD AZO 3-D Coated ZnO Nanorods

    Get PDF
    This paper reports an enhancement on the sensing performance of ZnO nanorod ethanol sensors with a new approach by utilizing nested coatings of Aluminum doped ZnO (AZO) thin films by Atomic Layer Deposition (ALD) technology. ZnO nanorods were grown by the hydrothermal method with the ZnO seed layer synthesized on Silicon wafers by ALD. To enhance the sensing performance of ZnO nanorod ethanol sensors, multiple coated AZO thin film 3-D coatings were deposited on the surface of the intrinsic ZnO nanorods by ALD.To investigate the sensing performance of the ZnO nanorods sensor for the detection of ethanol vapor, a gas sensor testing system was designed and built with a sealed reaction chamber and a temperature controller. The demonstrated sensing performance results include the sensing response comparison between ZnO nanorods before and after ALD coatings with AZO films at different temperatures and with various concentrations of input ethanol vapor. The response times and recovery times of ZnO nanorods before and after ALD coatings with AZO thin films were analyzed to investigate the sensing enhancement. The sensing response improvement peaks at 25°C room temperature with approximately 200% enhancement. However, the sensing response improvement decreases as a function of increasing operating temperature

    Picosecond Laser Pulse Irradiation of Crystalline Silicon

    Get PDF
    Morphology changes introduced by picosecond laser pulses at λ = 532 nm and 355 nm in (111) and (100) silicon samples are studied by means of optical and high-voltage electron microscopy. Depending on energy fluence, orientation and wavelength, amorphous or highly defective regions may be created. From an analysis of damage thresholds and damage depth distributions it is concluded that melting and energy confinement precedes the formation of the structural changes

    Nanomechanical and Morphological Characterization of Tungsten Trioxide (WO3) Thin Films Grown by Atomic Layer Deposition

    Get PDF
    This study investigates the nanomechanical properties and surface morphology of tungsten oxide WO3thin films deposited on p-type Si(100) substrates using atomic layer deposition (ALD) technology with 2000 ALD deposition cycles at a growth temperature of 300°C and annealed at different temperatures. The samples were further furnace annealed at 500, 600 and 700°C for 60 min. The influence of the deposition process on the structure and properties of the WO3 films is discussed, presented and correlated to the characteristic features of the ALD technique. The results depict significant difference in the hardness and modulus measurements between the as deposited sample and the annealed ones. The hardness and modulus drop from 14 and 170 GPa for the as deposited sample to 10 and 140 GPa for the annealed ones respectively. Surface roughness was observed to increase with annealing temperature and the initially amorphous as deposited sample reached complete recrystallization and transformed into polycrystalline films as indicated by XRD

    Electrical and Structural Properties of \u3ci\u3ep-n\u3c/i\u3e Junctions in cw Laser Annealed Silicon

    Get PDF
    Depth profiles of the electrical quality of ion implanted and cw laser annealed p-n junctions in silicon are obtained for the first time by secondary ion mass spectroscopy. A comparison with the crystallographic properties of the surface and the junction as observed by Nomarski optical microscopy as well as cross-sectional and plan view transmission electron microscopy is made. Samples containing slip dislocations show better insulation and a lower reverse bias current across the p-n junction as compared to samples with a perfect surface in agreement with current-voltage characteristics. Small dislocation loops located at the junction are found to degrade the junction quality

    Evaluation of the Mechanical Properties of Germanium-on-Insulator (GeOI) Films by Raman Spectroscopy and Nanoindentation

    Get PDF
    Germanium-on-insulator (GeOI) films fabricated using the Smart Cut™ wafer bonding and film exfoliation technology were investigated for the mechanical properties and induced phase transformations by using nanoindentation and Raman spectroscopy experiments. The hardness and modulus results of the GeOI films are significantly different from the literature published Silicon-on-Insulator and bulk germanium results. The GeOI films are softer and more flexible as compared to bulk Ge hardness and stiffness properties. The Raman spectroscopy of the spherical indents indicates bands of metastable Ge phases @ 220 cm−1, 195 cm−1, and 184 cm−1 wavenumbers. Our results demonstrate that a spherical indenter impacted a wider area of contact and produced GeOI indented surfaces free of cracks and fracture. The spherical indenter tip kept the Ge top layer intact when compared to the Berkovich indenter tip during penetration. In contrast, the Berkovich indenter tip developed excessive fracture that resulted in displacing the Ge top layer sideways and exposed the Si substrate underneath revealing Raman spectra bands of metastable Si phases @ 350 cm−1, 399 cm−1, and 430 cm−1
    • …
    corecore