78 research outputs found

    Sex difference in the interaction of alcohol intake, hepatitis B virus, and hepatitis C virus on the risk of cirrhosis

    Get PDF
    Background The joint effect of the interaction of alcohol intake, hepatitis B virus (HBV) and hepatitis C virus (HCV) on the risk of cirrhosis is still unexplored because a large sample size is required for this investigation. Objective Evaluation of interaction of HBV, HCV and alcohol abuse on the risk of cirrhosis. Design We analysed 12,262 consecutive patients with chronic liver disease of various aetiologies referring to 95 Italian liver units in 2001 or 2014. To evaluate the interaction between alcohol abuse, HBV infection, and HCV infection, patients unexposed to either factors were used as reference category. Adjustment for BMI and age was done by multiple logistic regression analysis. Results Females were older than males (p<0.01) and less frequently showed HBV and alcoholic aetiology (p<0.01). In both sexes, an overtime increasing age and an increasing proportion of subjects with liver cirrhosis was observed, reflecting a better survival (0.01).An additive interaction is observed in females: the O.R. generated by the simultaneous presence of HBV, HCV, and alcohol (5.09; 95% C.I. 1.06–24.56) exceeds the sum (4.14) of the O.R. generated by a single exposure (O.R. = 0.72 for HBsAg positivity, OR = 1.34 for antiHCV positivity, and O.R. = 2.08 for alcohol intake). No interaction is observed in male sex. Conclusions The observed gender difference suggests that the simultaneous presence of HBV/HCV coinfection and risky alcohol intake enhances the mechanism of liver damage to a greater extent in females than in males

    Unveiling Molecular Recognition of Sialoglycans by Human Siglec-10

    Get PDF
    29 p.-6 fig.-2 tab.-7 fig. supl.-2 tab. supl.-1 graph. abst.Siglec-10 is an inhibitory I-type lectin selectively recognizing sialoglycans exposed on cell surfaces, involved in several patho-physiological processes. The key role Siglec-10 plays in the regulation of immune cell functions has made it a potential target for the development of immunotherapeutics against a broad range of diseases. However, the crystal structure of the protein has not been resolved for the time being and the atomic description of Siglec-10 interactions with complex glycans has not been previously unraveled. We present here the first insights of the molecular mechanisms regulating the interaction between Siglec-10 and naturally occurring sialoglycans. We used combined spectroscopic, computational and biophysical approaches to dissect glycans' epitope mapping and conformation upon binding in order to afford a description of the 3D complexes. Our outcomes provide a structural perspective for the rational design and development of high-affinity ligands to control the receptor functionality.This study was supported by the project ‘‘GLYTUNES’’ funded by MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN 2017) (2017XZ2ZBK, 2019–2022) to A.S.; by progetto POR SATIN and Progetto POR CampaniaOncoterapia to A.M.; by the European Commission (H2020-MSCA- 814102-SWEET CROSSTALK project) to A.M., R.M., and A.S.. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program under grant agreement No 851356 to R.M. FSE,PON Ricerca e Innovazione 2014–2020, Azione I.1 ‘‘Dottorati Innovativi con caratterizzazione Industriale’’ is acknowledged for funding the PhD grant to R.E.F. Grants by the Spanish Ministry of Science MICINN (CTQ2017-88353-R and fellowship BES 2015–071588 to J.G.-C.) and Wellcome Trust 103744/Z/14/Z to P.R.C. are acknowledged.Peer reviewe

    Gender differences in chronic liver diseases in two cohorts of 2001 and 2014 in Italy

    Get PDF
    Background: Gender differences in chronic liver disease (CLD) have been partially investigated. To extend the present knowledge, we evaluated 12,263 patients with CLD enrolled in two national surveys (9997 in 2001 and 2557 in 2014). Methods: The two surveys prospectively recruited patients aged â¥Â 18 referring to Italian liver units throughout the country using a similar clinical approach and analytical methods. Results: The overall male to female ratio (M/F) was 1.4 (7138/5124). Compared with females, males were significantly more likely to be younger (52.9 vs. 58.7 yrs.), with HBV infection alone (13.2% vs. 9.2%) and with alcoholic liver disease alone (11.4% vs. 6.9%), but less likely to show HCV infection alone (48.0% vs. 67.9%). A male preponderance was observed in HBV-related cases (1.99) and in alcoholic-related cases (2.3), a preponderance observed both in the 2001 and in 2014 cases. In HCV-related cases, however, females predominated in 2001 (M/F 0.9) and males in 2014 (M/F 1.5).The rate of cirrhosis in alcohol-related etiology was close to 36% in both genders, a finding much higher than that observed for both sexes in HBV and HCV etiologies.Both males and females enrolled in 2014 were older (p < 0.001) and with a higher rate of cirrhosis and/or HCC (p < 0.001) than those investigated in 2001. There was a remarkable increase over time in the proportion of male abstainers (36.7% in 2001 and 64.3% in 2014). Conclusion: This study highlights important inter- and intra-gender differences in the characteristics and etiological factors of patients with CLD in Italy

    DECLINE OF PREVALENCE OF RESISTANCE ASSOCIATED SUBSTITUTIONS TO NS3 AND NS5A INHIBITORS AT DAA- FAILURE IN HEPATITIS C VIRUS IN ITALY OVER THE YEARS 2015 TO 2018

    Get PDF
    Background: A minority of patients fails to eliminate HCV and resistance-associated substitutions (RASs) are commonly detected at failure of interferon-free DAA regimens . Methods: Within the Italian network VIRONET-C, the prevalence of NS3/NS5A/NS5B RASs was retrospectively evaluated in patients who failed an EASL recommended DAA-regimen in 2015-2018 . The geno2pheno system and Sorbo MC et al. Drug Resistance Updates 2018 were used to infer HCV- genotype/subtype and predict drug resistance . The changes in prevalence of RASs over time were evaluated by chi-square test for trend, predictors of RASs at failure were analysed by logistic regression . Results: We included 386 HCV infected patients: 75% males, median age was 56 years (IQR 52-61), metavir fibrosis stage F4 in 76%; 106 (28%) were treatment- experienced: 91 (86%) with IFN-based treatments, 26 (25%) with DAAs. Patients with HIV and HBV coinfection were 10% (33/317) and 8% (6/72), respectively. HCV genotype was 1b in 122 pts (32%), 3 in 109 (28%), 1a in 97 (25%), 4 in 37 (10%), 2 in 21 (5%). DAA regimens were: LDV/SOF in 115 (30%), DCV/SOF in 103 (27%), 3D in 83 (21%), EBR/GRZ in 32 (8%), VEL/SOF in 29 (7%), GLE/PIB in 18 (5%) and 2D in 6 (2%); ribavirin was administered in 123 (32%) . The NS5A fasta-sequence was available for all patients, NS5B for 361 (94%), NS3 for 365 (95%) . According to the DAA failed the prevalence of any RASs was 90%, namely 80/135 (59%) in NS3, 313/359 (87%) in NS5A, 114/286 (40%) in NS5B . The prevalence of any RASs significantly declined from 2015 to 2018 (93% vs 70%, p=0.004): NS5A RASs from 90% to 72% (p=0 .29), NS3 RASs from 74% to 18% (p&lt;0 .001), while NS5B RASs remained stable . Independent predictors of any RASs included advanced fibrosis (AOR 6.1, CI 95% 1.8-20.3, p=0 .004) and genotype (G2 vs G1a AOR 0 .03, CI 95% 0 .002- 0 .31, p=0 .004; G3 vs G1a AOR 0 .08, CI 95% 0 .01-0 .62, p=0 .02; G4 vs G1a AOR 0 .05, CI 95% 0 .006-0 .46, p=0 .008), after adjusting for age, previous HCV treatment and year of genotype . Notably, full activity was predicted for GLE/PIB in 75% of cases and for at least two components of VEL/SOF/VOX in 53% of cases, no case with full-resistance to either regimen was found . Conclusion: Despite decreasing prevalence over the years, RASs remain common at virological failure of DAA treatment, particularly in patients with the highest grade of liver fibrosis. The identification of RASs after failure could play a crucial role in optimizing retreatment strategies

    Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs

    No full text
    β-thalassaemia is a rare genetic condition caused by mutations in the β-globin gene that result in severe iron-loading anaemia, maintained by a detrimental state of ineffective erythropoiesis (IE). The role of multiple mechanisms involved in the pathophysiology of the disease has been recently unravelled. The unbalanced production of α-globin is a major source of oxidative stress and membrane damage in red blood cells (RBC). In addition, IE is tightly linked to iron metabolism dysregulation, and the relevance of new players of this pathway, i.e., hepcidin, erythroferrone, matriptase-2, among others, has emerged. Advances have been made in understanding the balance between proliferation and maturation of erythroid precursors and the role of specific factors in this process, such as members of the TGF-β superfamily, and their downstream effectors, or the transcription factor GATA1. The increasing understanding of IE allowed for the development of a broad set of potential therapeutic options beyond the current standard of care. Many candidates of disease-modifying drugs are currently under clinical investigation, targeting the regulation of iron metabolism, the production of foetal haemoglobin, the maturation process, or the energetic balance and membrane stability of RBC. Overall, they provide tools and evidence for multiple and synergistic approaches that are effectively moving clinical research in β-thalassaemia from bench to bedside

    Identification of glucosinolates in Capers by LC-ESI using a hybrid linear ion trap with Fourier-transform ion cyclotron resonance mass spectrometry (LC-ESI-LTQ-FTICR-MS) and infrared multiphoton dissociation

    No full text
    An liquid chromatography-mass spectrometry method using electrospray ionization in negative ion mode coupled with a hybrid quadrupole linear ion trap and Fourier transform ion cyclotron resonance (FTICR) mass spectrometer was applied to characterize of intact glucosinolates (GLSs) in crude sample extracts of wild bud flowers of Capparis spinosa (Capparis species, family Capparaceae). Structural information of GLSs was obtained upon precursor ions' isolation within the FTICR trapping cell and subsequent fragmentation induced by infrared multiphoton dissociation (IRMPD). Such a fragmentation was found very useful in terms of chemical identification of all precursor ions [M-H]- including sulfur-rich GLSs reported here for the first time. Along with most common GLSs already found in capers such as glucocapparin, isopropyl/n-propyl- GLS, mercapto-glucocapparin, and two indolic GLS, i.e., 4-hydroxyglucobrassicin and glucobrassicin, the occurrence of the uncommon glycinyl-glucocapparin as well as two sulfur-rich GLSs is reported. IRMPD showed an increased selectivity towards disulfide bond cleavages with thiol migration, suggesting the side chain structure of non-targeted compounds, i.e., disulfanyl-glucocapparin and trisulfanyl-glucocapparin. Glucocapparin [2.05 ± 0.25 mg/g, dry weight (dw)] was the most abundant GLS, followed by glucobrassicin (232 ± 18 μg/g, dw) and 4-hydroxyglucobrassicin (89 ± 12 μg/g, dw). All other compounds were present at very low content ranging from 0.5 to 1.5 μg/g dw

    New insights into endocannabinoid degradation and its therapeutic potential

    No full text
    Endocannabinoids are amides, esters and ethers of long chain polyunsaturated fatty acids, which act as new lipidic mediators. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the main endogenous agonists of cannabinoid receptors, able to mimic several pharmacological effects of (-)-Δ9-tetrahydrocannabinol (THC), the active principle of Cannabis sativa preparations like hashish and marijuana. The activity of AEA and 2-AG at their receptors is limited by cellular uptake through an anandamide membrane transporter (AMT), followed by intracellular degradation. A fatty acid amide hydrolase (FAAH) is the main AEA hydrolase, whereas a monoacylglycerol lipase (MAGL) is critical in degrading 2-AG. Here, we will review growing evidence that demonstrates that these hydrolases are pivotal regulators of the endogenous levels of AEA and 2-AG in vivo, overall suggesting that specific inhibitors of AMT, FAAH or MAGL may serve as attractive therapeutic targets for the treatment of human disorders. Recently, the N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD), which synthesizes AEA from N-arachidonoylphosphatidylethanolamine (NArPE), and the diacylglycerol lipase (DAGL), which generates 2-AG from diacylglycerol (DAG) substrates, have been characterized. The role of these synthetic routes in maintaining the endocannabinoid tone in vivo will be discussed. Finally, the effects of inhibitors of endocannabinoid degradation in animal models of human disease will be reviewed, with an emphasis on their ongoing applications in anxiety, cancer and neurodegenerative disorder

    Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III

    Get PDF
    Lasioglossin III (LL-III) is a cationic antimicrobial peptide derived from the venom of the eusocial bee Lasioglossum laticeps. LL-III is extremely toxic to both Gram-positive and Gram-negative bacteria, and it exhibits antifungal as well as antitumor activity. Moreover, it shows low hemolytic activity, and it has almost no toxic effects on eukaryotic cells. However, the molecular basis of the LL-III mechanism of action is still unclear. In this study, we characterized by means of calorimetric (DSC) and spectroscopic (CD, fluorescence) techniques its interaction with liposomes composed of a mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-rac-phosphoglycerol (POPG) lipids as a model of the negatively charged membrane of pathogens. For comparison, the interaction of LL-III with the uncharged POPC liposomes was also studied. Our data showed that LL-III preferentially interacted with anionic lipids in the POPC/POPG liposomes and induces the formation of lipid domains. Furthermore, the leakage experiments showed that the peptide could permeabilize the membrane. Interestingly, our DSC results showed that the peptide-membrane interaction occurs in a non-disruptive manner, indicating an intracellular targeting mode of action for this peptide. Consistent with this hypothesis, our gel-retardation assay experiments showed that LL-III could interact with plasmid DNA, suggesting a possible intracellular target
    corecore