101 research outputs found
Secure Metric-Based Index for Similarity Cloud
We propose a similarity index that ensures data privacy and thus is suitable for search systems outsourced in a cloud. The proposed solution can exploit existing efficient metric indexes based on a fixed set of reference points. The method has been fully implemented as a security extension of an existing established approach called M-Index. This Encrypted M-Index supports evaluation of standard range and nearest neighbors queries both in precise and approximate manner. In the first part of this work, we analyze various levels of privacy in existing or future similarity search systems; the proposed solution tries to keep a reasonable privacy level while relocating only the necessary amount of work from server to an authorized client. The Encrypted M-Index has been tested on three real data sets with focus on various cost components
Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries
The importance of quantum effects for exotic nuclear shapes is demonstrated.
Based on the example of a sheet of nuclear matter of infinite lateral
dimensions but finite thickness, it is shown that the quantization of states in
momentum space, resulting from the confinement of the nucleonic motion in the
conjugate geometrical space, generates a strong resistance against such a
confinement and generates restoring forces driving the system towards compact
geometries. In the liquid-drop model, these quantum effects are implicitly
included in the surface energy term, via a choice of interaction parameters, an
approximation that has been found valid for compact shapes, but has not yet
been scrutinized for exotic shapes.Comment: 9 pages with 3 figure
The role of three-body collisions in phi-meson production processes near threshold
The amplitude of subthreshold phi-meson production is calculated using
dominant tree-level diagrams for three-body collisions. It is shown that the
production can overwhelmingly be described by two-step processes. The effect of
the genuine three-body contribution (i.e. the contribution which cannot be
factorized) is discussed. The production rate of phi-mesons is presented for
proton induced reactions on carbon.Comment: 19 page
Antibaryons in massive heavy ion reactions: Importance of potentials
In the framework of RQMD we investigate antiproton observables in massive
heavy ion collisions at AGS energies and compare to preliminary results of the
E878 collaboration. We focus here on the considerable influence of the *real*
part of an antinucleon--nucleus optical potential on the antiproton momentum
spectra
Subthreshold antiproton production in proton-carbon reactions
Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-)
production in proton-nucleus reactions are described at projectile energies
between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus
reaction as an incoherent sum over collisions of the projectile with a varying
number of target nucleons. It samples complete events and allows thus for the
simultaneous consideration of all particle species measured. The overall
reproduction of the data is quite satisfactory. It is shown that the
contributions from the interaction of the projectile with groups of several
target nucleons are decisive for the description of subthreshold production.
Since the collective features of subthreshold production become especially
significant far below the threshold, the results are extrapolated down to COSY
energies. It is concluded that an antiproton measurement at ANKE-COSY should be
feasible, if the high background of other particles can be efficiently
suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2:
Modification of text due to demands of referee
Medium effects in high energy heavy-ion collisions
The change of hadron properties in dense matter based on various theoretical
approaches are reviewed. Incorporating these medium effects in the relativistic
transport model, which treats consistently the change of hadron masses and
energies in dense matter via the scalar and vector fields, heavy-ion collisions
at energies available from SIS/GSI, AGS/BNL, and SPS/CERN are studied. This
model is seen to provide satisfactory explanations for the observed enhancement
of kaon, antikaon, and antiproton yields as well as soft pions in the
transverse direction from the SIS experiments. In the AGS heavy-ion
experiments, it can account for the enhanced ratio, the difference
in the slope parameters of the and transverse kinetic energy
spectra, and the lower apparent temperature of antiprotons than that of
protons. This model also provides possible explanations for the observed
enhancement of low-mass dileptons, phi mesons, and antilambdas in heavy-ion
collisions at SPS energies. Furthermore, the change of hadron properties in hot
dense matter leads to new signatures of the quark-gluon plasma to hadronic
matter transition in future ultrarelativistic heavy-ion collisions at RHIC/BNL.Comment: RevTeX, 65 pages, including 25 postscript figures, invited topical
review for Journal of Physics G: Nuclear and Particle Physic
A comparative study of model ingredients: fragmentation in heavy-ion collisions using quantum molecular dynamics model
We aim to understand the role of NN cross-sections, equation of state as well
as different model ingredients such as width of Gaussian, clusterisation range
and different clusterisation algorithms in multifragmentation using quantum
molecular dynamics model. We notice that all model ingredients have sizable
effect on the fragment pattern.Comment: 12 Pages, 4 Figure
- âŠ