3,076 research outputs found
Formation of the First Supermassive Black Holes
We consider the physical conditions under which supermassive black holes
could have formed inside the first galaxies. Our SPH simulations indicate that
metal-free galaxies with a virial temperature ~10^4 K and with suppressed H2
formation (due to an intergalactic UV background) tend to form a binary black
hole system which contains a substantial fraction (>10%) of the total baryonic
mass of the host galaxy. Fragmentation into stars is suppressed without
substantial H2 cooling. Our simulations follow the condensation of ~5x10^6
M_sun around the two centers of the binary down to a scale of < 0.1pc. Low-spin
galaxies form a single black hole instead. These early black holes lead to
quasar activity before the epoch of reionization. Primordial black hole
binaries lead to the emission of gravitational radiation at redshifts z>10 that
would be detectable by LISA.Comment: 11 pages, 9 figures, revised version, ApJ in press (October 10, 2003
The effect of magnetic fields on star cluster formation
We examine the effect of magnetic fields on star cluster formation by
performing simulations following the self-gravitating collapse of a turbulent
molecular cloud to form stars in ideal MHD. The collapse of the cloud is
computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is
using both weak and strong magnetic fields. Whilst even at very low strengths
the magnetic field is able to significantly influence the star formation
process, for magnetic fields with plasma beta < 1 the results are substantially
different to the hydrodynamic case. In these cases we find large-scale
magnetically-supported voids imprinted in the cloud structure; anisotropic
turbulent motions and column density structure aligned with the magnetic field
lines, both of which have recently been observed in the Taurus molecular cloud.
We also find strongly suppressed accretion in the magnetised runs, leading to
up to a 75% reduction in the amount of mass converted into stars over the
course of the calculations and a more quiescent mode of star formation. There
is also some indication that the relative formation efficiency of brown dwarfs
is lower in the strongly magnetised runs due to the reduction in the importance
of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version
with high-res figures + movies available from
http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm
Formation of Globular Clusters in Galaxy Mergers
We present a high-resolution simulation of globular cluster formation in a
galaxy merger. For the first time in such a simulation, individual star
clusters are directly identified and followed on their orbits. We
quantitatively compare star formation in the merger to that in the unperturbed
galaxies. The merging galaxies show a strong starburst, in sharp contrast to
their isolated progenitors. Most star clusters form in the tidal features. With
a mass range of --, they are
identified as globular clusters. The merger remnant is an elliptical galaxy.
Clusters with different mass or age have different radial distributions in the
galaxy. Our results show that the high specific frequency and bimodal
distribution of metallicity observed in elliptical galaxies are natural
products of gas-rich mergers, supporting a merger origin for the ellipticals
and their globular cluster systems.Comment: ApJL accepted, version with high quality color images can be found in
http://research.amnh.org/~yuexing/astro-ph/0407248.pd
The Spatial Structure of Young Stellar Clusters. III. Physical Properties and Evolutionary States
We analyze the physical properties of stellar clusters that are detected in
massive star-forming regions in the MYStIX project--a comparative,
multiwavelength study of young stellar clusters within 3.6 kpc that contain at
least one O-type star. Tabulated properties of subclusters in these regions
include physical sizes and shapes, intrinsic numbers of stars, absorptions by
the molecular clouds, and median subcluster ages. Physical signs of dynamical
evolution are present in the relations of these properties, including
statistically significant correlations between subcluster size, central
density, and age, which are likely the result of cluster expansion after gas
removal. We argue that many of the subclusters identified in Paper I are
gravitationally bound because their radii are significantly less than what
would be expected from freely expanding clumps of stars with a typical initial
stellar velocity dispersion of ~3 km/s for star-forming regions. We explore a
model for cluster formation in which structurally simpler clusters are built up
hierarchically through the mergers of subclusters--subcluster mergers are
indicated by an inverse relation between the numbers of stars in a subcluster
and their central densities (also seen as a density vs. radius relation that is
less steep than would be expected from pure expansion). We discuss implications
of these effects for the dynamical relaxation of young stellar clusters.Comment: Accepted for publication in The Astrophysical Journal ; 48 pages, 13
figures, and 6 table
Stellar Encounters with Massive Star-Disk Systems
The dense, clustered environment in which massive stars form can lead to
interactions with neighboring stars. It has been hypothesized that collisions
and mergers may contribute to the growth of the most massive stars. In this
paper we extend the study of star-disk interactions to explore encounters
between a massive protostar and a less massive cluster sibling using the
publicly available SPH code GADGET-2. Collisions do not occur in the parameter
space studied, but the end state of many encounters is an eccentric binary with
a semi-major axis ~ 100 AU. Disk material is sometimes captured by the
impactor. Most encounters result in disruption and destruction of the initial
disk, and periodic torquing of the remnant disk. We consider the effect of the
changing orientation of the disk on an accretion driven jet, and the evolution
of the systems in the presence of on-going accretion from the parent core.Comment: 11 pages, 10 figures, accepted to Ap
Forming the First Stars in the Universe: The Fragmentation of Primordial Gas
In order to constrain the initial mass function (IMF) of the first generation
of stars (Population III), we investigate the fragmentation properties of
metal-free gas in the context of a hierarchical model of structure formation.
We investigate the evolution of an isolated 3-sigma peak of mass 2x10^6 M_solar
which collapses at z_coll=30 using Smoothed Particle Hydrodynamics. We find
that the gas dissipatively settles into a rotationally supported disk which has
a very filamentary morphology. The gas in these filaments is Jeans unstable
with M_J~10^3 M_solar. Fragmentation leads to the formation of high density
(n>10^8 cm^-3) clumps which subsequently grow in mass by accreting surrounding
gas and by merging with other clumps up to masses of ~10^4 M_solar. This
suggests that the very first stars were rather massive. We explore the complex
dynamics of the merging and tidal disruption of these clumps by following their
evolution over a few dynamical times.Comment: 7 pages, 3 figures, uses emulateapj.sty. Accepted for publication in
the Astrophysical Journal Letter
Star Formation in Isolated Disk Galaxies. I. Models and Characteristics of Nonlinear Gravitational Collapse
We model gravitational collapse leading to star formation in a wide range of
isolated disk galaxies using a three-dimensional, smoothed particle
hydrodynamics code. The model galaxies include a dark matter halo and a disk of
stars and isothermal gas. Absorbing sink particles are used to directly measure
the mass of gravitationally collapsing gas. They reach masses characteristic of
stellar clusters. In this paper, we describe our galaxy models and numerical
methods, followed by an investigation of the gravitational instability in these
galaxies. Gravitational collapse forms star clusters with correlated positions
and ages, as observed, for example, in the Large Magellanic Cloud.
Gravitational instability alone acting in unperturbed galaxies appears
sufficient to produce flocculent spiral arms, though not more organized
patterns. Unstable galaxies show collapse in thin layers in the galactic plane;
associated dust will form thin dust lanes in those galaxies, in agreement with
observations. (abridged)Comment: 49 pages, 22 figures, to appear in ApJ (July, 2005), version with
high quality color images can be fond in
http://research.amnh.org/~yuexing/astro-ph/0501022.pd
Facilitating goal-oriented behaviour in the Stroop task: when executive control is influenced by automatic processing.
A portion of Stroop interference is thought to arise from a failure to maintain goal-oriented behaviour (or goal neglect). The aim of the present study was to investigate whether goal- relevant primes could enhance goal maintenance and reduce the Stroop interference effect. Here it is shown that primes related to the goal of responding quickly in the Stroop task (e.g. fast, quick, hurry) substantially reduced Stroop interference by reducing reaction times to incongruent trials but increasing reaction times to congruent and neutral trials. No effects of the primes were observed on errors. The effects on incongruent, congruent and neutral trials are explained in terms of the influence of the primes on goal maintenance. The results show that goal priming can facilitate goal-oriented behaviour and indicate that automatic processing can modulate executive control
Evolution of Giant Planets in Eccentric Disks
We investigate the interaction between a giant planet and a viscous
circumstellar disk by means of high-resolution, two-dimensional hydrodynamical
simulations. We consider planet masses that range from 1 to 3 Jupiter masses
(Mjup) and initial orbital eccentricities that range from 0 to 0.4. We find
that a planet can cause eccentricity growth in a disk region adjacent to the
planet's orbit, even if the planet's orbit is circular. Disk-planet
interactions lead to growth in a planet's orbital eccentricity. The orbital
eccentricities of a 2 Mjup and a 3 Mjup planet increase from 0 to 0.11 within
about 3000 orbits. Over a similar time period, the orbital eccentricity of a 1
Mjup planet grows from 0 to 0.02. For a case of a 1 Mjup planet with an initial
eccentricity of 0.01, the orbital eccentricity grows to 0.09 over 4000 orbits.
Radial migration is directed inwards, but slows considerably as a planet's
orbit becomes eccentric. If a planet's orbital eccentricity becomes
sufficiently large, e > ~0.2, migration can reverse and so be directed
outwards. The accretion rate towards a planet depends on both the disk and the
planet orbital eccentricity and is pulsed over the orbital period. Planet mass
growth rates increase with planet orbital eccentricity. For e~0.2 the mass
growth rate of a planet increases by approximately 30% above the value for e=0.
For e > ~0.1, most of the accretion within the planet's Roche lobe occurs when
the planet is near the apocenter. Similar accretion modulation occurs for flow
at the inner disk boundary which represents accretion toward the star.Comment: 20 pages 16 figures, 3 tables. To appear in The Astrophysical Journal
vol.652 (December 1, 2006 issue
The Formation of the First Stars. I. The Primordial Star Forming Cloud
To constrain the nature of the very first stars, we investigate the collapse
and fragmentation of primordial, metal-free gas clouds. We explore the physics
of primordial star formation by means of three-dimensional simulations of the
dark matter and gas components, using smoothed particle hydrodynamics, under a
wide range of initial conditions, including the initial spin, the total mass of
the halo, the redshift of virialization, the power spectrum of the DM
fluctuations, the presence of HD cooling, and the number of particles employed
in the simulation. We find characteristic values for the temperature, T ~ a few
100 K, and the density, n ~ 10^3-10^4 cm^-3, characterising the gas at the end
of the initial free-fall phase. These values are rather insensitive to the
initial conditions. The corresponding Jeans mass is M_J ~ 10^3 M_sun. The
existence of these characteristic values has a robust explanation in the
microphysics of H2 cooling, connected to the minimum temperature that can be
reached with the H2 coolant, and to the critical density at which the
transition takes place betweeb levels being populated according to NLTE, and
according to LTE.
In all cases, the gas dissipatively settles into an irregular, central
configuration which has a filamentary and knotty appearance. The fluid regions
with the highest densities are the first to undergo runaway collapse due to
gravitational instability, and to form clumps with initial masses ~ 10^3 M_sun,
close to the characteristic Jeans scale. These results suggest that the first
stars might have been quite massive, possibly even very massive with M_star >
100 M_sun.Comment: Minor revisions. 26 pages, including 24 figures and 5 tables. ApJ, in
press. To appear in the Dec. 20, 2001 issue (v563
- …
