35 research outputs found

    Rhamphicarpa fistulosa, a widespread facultative hemi-parasitic weed, threatening rice production in Africa

    Get PDF
    Rhamphicarpa fistulosa is a facultative hemi-parasitic plant of the Orobanchaceae family, adapted to wet soils. Apart from tropical Australia, it is only found in sub-Saharan Africa, where it is considered a minor weed in cereal crops such as rice. Due to this status, the species has received only sporadic attention. Recent field observations and encounters with rice farmers in several African countries showed that R. fistulosa is, however, a more serious and increasing production constraint than previously thought. Results from a systematic literature review and a global herbarium study support this. The species has a broad distribution over Africa (at least 35 countries from Madagascar to Senegal and from Sudan to South Africa) and a wide range in altitude (0–2150 m a.s.l.) and environment (waterlogged swamps to moist free-draining uplands). Rhamphicarpa fistulosa is relatively independent and persistent because of the presumably wide host range, the facultative nature of its parasitism and its prolific seed (estimated 100 000 seeds m−2 under moderate infestation levels). Finally, R. fistulosa causes severe yield losses (average 60%) and high regional annual economic losses (estimated US $175 million), while effective control options are scant and awareness of the species among important R&D stakeholders is almost absent. An integrated approach is advocated to assist the rice sector to reduce current R. fistulosa-inflicted losses and to prevent further spread of the species into new areas

    Understanding and optimizing species mixtures using functional–structural plant modelling

    Get PDF
    Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.g. with regard to nitrogen content and photosynthetic capacity or by size (e.g. shade avoidance). As a result, the resource acquisition in time and space is improved and performance of the community as a whole is increased. Modelling is needed to unravel the primary drivers and subsequent dynamics of complementary growth responses in mixtures. Here, we advocate using functional–structural plant (FSP) modelling to analyse the functioning of plant mixtures. In FSP modelling, crop performance is a result of the behaviour of the individual plants interacting through competitive and complementary resource acquisition. FSP models can integrate the interactions between structural and physiological plant responses to the local resource availability and strength of competition, which drive resource capture and growth of individuals in species mixtures. FSP models have the potential to accelerate mixed-species plant research, and thus support the development of knowledge that is needed to promote the use of mixtures towards sustainably increasing crop yields at acceptable input levels

    Biochar improves fertility of a clay soil in the Brazilian Savannah: short term effects and impact on rice yield

    Get PDF
    The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1)

    Systems approaches to innovation in pest management: reflections and lessons learned from an integrated research program on parasitic weeds in rice

    Get PDF
    This paper provides a retrospective look at a systems-oriented research program, on the increasing occurrence of parasitic weeds in rainfed rice in sub-Saharan Africa, to qualitatively assess merits and identify challenges of such approach. We gained a broad contextual overview of the problem and different stakeholders' roles, which enabled identification of entry points for innovations in parasitic weed management. At the crop level parasitic weed infestation is associated with poor soil fertility and water management. Farmers' infrequent use of inputs to control them was caused by various factors, ranging from fears of undesired side effects (agronomic) to a lack of quality control of products (institutional). Furthermore, there may be enough extension agents, but they lack the required training on (parasitic) weed management to provide farmers with advice, while their organizations do not provide them with the necessary means for farm visits. At even higher organizational levels we observed a lack of coherent policies on parasitic weed control and implementation of them. Merits and challenges of an integrated multi-stakeholder and multi-level research project are discussed

    Characterization of host tolerance to Striga hermonthica

    Get PDF
    One of the most promising control options against the parasitic weed Striga hermonthica is the use of crop varieties that combine resistance with high levels of tolerance. The aim of this study was to clarify the relation between Striga infestation level, Striga infection level and relative yield loss of sorghum and to use this insight for exploring the options for a proper screening procedure for tolerance. In three pot experiments, conducted in Mali (2003) and The Netherlands (2003, 2004), four sorghum genotypes were exposed to a range of Striga infestation levels, ranging from 0.0625 to 16 seeds cm−3. Observations included regular Striga emergence counts and sorghum grain yield at maturity. There were significant genotype, infestation and genotype × infestation effects on sorghum yield. The relation between infestation level and infection level was density dependent. Furthermore, the relation between Striga infection level and relative yield loss was non-linear, though for the most resistant genotype Framida only the linear part of the relation was obtained, as even at high infestation levels only moderate infection levels were achieved. The results suggest that for resistant genotypes, tolerance can best be quantified as a reduced relative yield loss per aboveground Striga plant, whereas for less resistant genotypes the maximum relative yield loss can best be used. Whether both expressions of tolerance are interrelated could not be resolved. Complications of screening for tolerance under field conditions are discussed
    corecore