759 research outputs found

    Scattering states of a particle, with position-dependent mass, in a double heterojunction

    Full text link
    In this work we obtain the exact analytical scattering solutions of a particle (electron or hole) in a semiconductor double heterojunction - potential well / barrier - where the effective mass of the particle varies with position inside the heterojunctions. It is observed that the spatial dependence of mass within the well / barrier introduces a nonlinear component in the plane wave solutions of the continuum states. Additionally, the transmission coefficient is found to increase with increasing energy, finally approaching unity, whereas the reflection coefficient follows the reverse trend and goes to zero.Comment: 7 pages, 6 figure

    InAs-GaSb laser: Prospects for efficient THz emission

    Full text link
    We suggest to use InAs/GaSb coupled quantum wells for THz lasing. In these heterostructures THz lasing is based not on intersubband but on interband transitions. Crucial advantages of this design in comparison with intersubband lasers are (i) a large value of the interband dipole matrix element and (ii) easier maintaining of population inversion. These advantages lead to a gain of two orders of magnitude higher than for intersubband lasing. Even higher gain can be obtained in special design InAs/GaSb W-structures where a hybridization gap of 1-3THz is formed and optical density of states is singular.Comment: 14 pages, 2 figures. Accepted for publication in Applied Physics Letter

    Exact solution of Schrodinger equation for modified Kratzer's molecular potential with the position-dependent mass

    Full text link
    Exact solutions of Schrodinger equation are obtained for the modified Kratzer and the corrected Morse potentials with the position-dependent effective mass. The bound state energy eigenvalues and the corresponding eigenfunctions are calculated for any angular momentum for target potentials. Various forms of point canonical transformations are applied. PACS numbers: 03.65.-w; 03.65.Ge; 12.39.Fd Keywords: Morse potential, Kratzer potential, Position-dependent mass, Point canonical transformation, Effective mass Schr\"{o}dinger equation.Comment: 9 page

    Charge qubits in semiconductor quantum computer architectures: Tunnel coupling and decoherence

    Full text link
    We consider charge qubits based on shallow donor electron states in silicon and coupled quantum dots in GaAs. Specifically, we study the feasibility of P2+_2^+ charge qubits in Si, focusing on single qubit properties in terms of tunnel coupling between the two phosphorus donors and qubit decoherence caused by electron-phonon interaction. By taking into consideration the multi-valley structure of the Si conduction band, we show that inter-valley quantum interference has important consequences for single-qubit operations of P2+_2^+ charge qubits. In particular, the valley interference leads to a tunnel-coupling strength distribution centered around zero. On the other hand, we find that the Si bandstructure does not dramatically affect the electron-phonon coupling and consequently, qubit coherence. We also critically compare charge qubit properties for Si:P2+_2^+ and GaAs double quantum dot quantum computer architectures.Comment: 10 pages, 3 figure

    Scattering states of a particle, with position-dependent mass, in a PT{\cal{PT}} symmetric heterojunction

    Full text link
    The study of a particle with position-dependent effective mass (pdem), within a double heterojunction is extended into the complex domain --- when the region within the heterojunctions is described by a non Hermitian PT{\cal{PT}} symmetric potential. After obtaining the exact analytical solutions, the reflection and transmission coefficients are calculated, and plotted as a function of the energy. It is observed that at least two of the characteristic features of non Hermitian PT{\cal{PT}} symmetric systems --- viz., left / right asymmetry and anomalous behaviour at spectral singularity, are preserved even in the presence of pdem. The possibility of charge conservation is also discussed.Comment: 12 pages, including 6 figures; Journal of Physics A : Math. Theor. (2012

    Longitudinal spin transport in diluted magnetic semiconductor superlattices: the effect of the giant Zeeman splitting

    Full text link
    Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic field region the giant Zeeman splitting plays a dominant role which leads to a large negative magnetoconductivity. In the strong magnetic field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s−ds-d exchange interaction between the electron in the conduction band and the magnetic ions.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    Interband electron Raman scattering in a quantum wire in a transverse magnetic field

    Full text link
    Electron Raman scattering (ERS) is investigated in a parabolic semiconductor quantum wire in a transverse magnetic field neglecting by phonon-assisted transitions. The ERS cross-section is calculated as a function of a frequency shift and magnetic field. The process involves an interband electronic transition and an intraband transition between quantized subbands. We analyze the differential cross-section for different scattering configurations. We study selection rules for the processes. Some singularities in the Raman spectra are found and interpreted. The scattering spectrum shows density-of-states peaks and interband matrix elements maximums and a strong resonance when scattered frequency equals to the "hybrid" frequency or confinement frequency depending on the light polarization. Numerical results are presented for a GaAs/AlGaAs quantum wire.Comment: 8 pages, 5 figure

    Measurement of miniband parameters of a doped superlattice by photoluminescence in high magnetic fields

    Full text link
    We have studied a 50/50\AA superlattice of GaAs/Al0.21_{0.21}Ga0.79_{0.79}As composition, modulation-doped with Si, to produce n=1.4×1012n=1.4\times 10^{12} cm−2^{-2} electrons per superlattice period. The modulation-doping was tailored to avoid the formation of Tamm states, and photoluminescence due to interband transitions from extended superlattice states was detected. By studying the effects of a quantizing magnetic field on the superlattice photoluminescence, the miniband energy width, the reduced effective mass of the electron-hole pair, and the band gap renormalization could be deduced.Comment: minor typing errors (minus sign in eq. (5)

    Effect of in-plane magnetic field on the photoluminescence spectrum of modulation-doped quantum wells and heterojunctions

    Full text link
    The photoluminescence (PL) spectrum of modulation-doped GaAs/AlGaAs quantum wells (MDQW) and heterojunctions (HJ) is studied under a magnetic field (B∄B_{\|}) applied parallel to the two-dimensional electron gas (2DEG) layer. The effect of B∄B_{\|} strongly depends on the electron-hole separation (dehd_{eh}), and we revealed remarkable B∄B_{\|}-induced modifications of the PL spectra in both types of heterostructures. A model considering the direct optical transitions between the conduction and valence subband that are shifted in k-space under B∄B_{\|}, accounts qualitatively for the observed spectral modifications. In the HJs, the PL intensity of the bulk excitons is strongly reduced relatively to that of the 2DEG with increasing B∄B_{\|}. This means that the distance between the photoholes and the 2DEG decreases with increased B∄B_{\|}, and that free holes are responsible for the hole-2DEG PL.Comment: 6pages, 5figure
    • 

    corecore