9 research outputs found

    Screening of rice cultivars for Cr-stress response by using the parameters of seed germination, morpho-physiological and antioxidant analysis

    Get PDF
    Rice is the most important crop for the majority of population across the world with sensitive behavior toward heavy metals such as chromium (Cr) in polluted regions. Although, there is no information on the Cr resistance phenotyping in rice. Herein, two different groups of rice cultivars (normal, and hybrid) were used, each group with 14 different rice cultivars. Firstly, seed germination analysis was conducted by evaluating various seed germination indices to identify the rice cultivars with greatest seed germination vigor. Furthermore, exposure of chromium (Cr) toxicity to 28 different rice varieties (NV1-NV14, HV1-HV14) caused noticeable plant biomass reduction. Subsequently, NV2, NV6, NV10, NV12, NV13 (normal type), HV1, HV4, HV8, and HV9 (hybrid types) were pragmatic as moderately sensitive varieties, while NV3, NV4, NV9, and NV14 (normal type), HV3, HV6, HV7, and HV13 were observed as moderately tolerant. Although, NV7, and HV10 were ranked most sensitive cultivars, and NV11, and HV14 were considered as most tolerant varieties as compared to the other rice (both groups) genotypes. Afterward, Cr induced reduction in chlorophyll pigments were significantly lesser in HV14 relative to NV11, NV7, and especially HV10, and as a result HV14 modulated the total soluble sugar level as well as reduced ROS accumulation, and MDA contents production by stimulating the antioxidant defense mechanism conspicuously which further reduced the electrolyte leakage as well. Our outcomes provide support to explore the Cr tolerance mechanism in cereal crops as well as knowledge about rice breeding with increased tolerance against Cr stress.This research was supported by National Natural Science Foundation of China (No. 32072127), Zhejiang Provincial Natural Science Foundation (No. LY21C130006), Dabeinong Funds for Discipline Development and Talent Training in Zhejiang University, Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry (CIC-MCP) and Zhenjiang International-joint fund (No. GJ2020010). The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP-2021/168), King Saud University, Riyadh, Saudi Arabia

    Bio-inoculation with Serratia CP-13 enhances Cd detoxification via modulation of phytohormone, gas exchange attributes and nutrient acquisition in maize cultivars cultivated in Cd-stressed soil

    No full text
    Heavy metals contamination of soil is increasing rapidly due to prompt in urbanization and industrialization. Recently, cadmium (Cd) pollution has emerged as a severe menace to plant and human health, while the use of plant growth promoting rhizobacteria (PGPR) has appeared as an economical approach for bioremediation of Cd toxicity in crop plants. In this study, the effect of Serratia sp. CP-13 inoculation on two maize cultivars in pre-Cd (0, 5, 12, 18, 26, 30 µM) spiked soil was evaluated. The combined effect of soil Cd and CP-13 application was assessed through the analysis of seed germination, plant biomass, phytohormones, gas exchange attributes, antioxidant production, plant Cd, and nutrient uptake in two (Sahiwal-2002, MMRI-Yellow) maize cultivars. Our outcomes exposed that single treatment of Cd-spiked soil significantly downregulates seed germination, plant biomass, plant nutrients, photosynthetic pigments, indole acetic acid (IAA), total protein, proline, total soluble sugar (TSS), stomatal conductance, transpiration rate, net photosynthesis, and antioxidant production, together with upregulating malondialdehyde (MDA), relative membrane permeability (RMP), abscisic acid (ABA), and Cd uptake in maize cultivars. However, this response of the maize crop against Cd-spiked soil was found to be maximal in Sahiwal-2002 at 30 µM Cd. Furthermore, the inoculation of Cd-resistant CP-13 significantly upregulates the plant accumulation of biomass, seed germination, antioxidants, IAA, gas exchange attributes, photosynthetic pigments, plant physiology, and nutrient uptake and downregulates the MDA, RMP, ABA, and root/shoot Cd accretion in two cultivars of maize. Moreover, this CP-13 based upregulation of plant growth was found to be cultivar (Sahiwal-2002) and Cd treatment (30 µM) specific by controlling the accumulation of lipid peroxidation, phytohormone content, and Cd detoxification. Further, our results indicate that the CP-13 might be a promising and cost effective future biofertilizer for bioremediation of soil Cd

    Brassinosteroid Supplementation Alleviates Chromium Toxicity in Soybean (<i>Glycine max</i> L.) via Reducing Its Translocation

    No full text
    Chromium (Cr) phytotoxicity severely inhibits plant growth and development which makes it a prerequisite to developing techniques that prevent Cr accumulation in food chains. However, little is explored related to the protective role of brassinosteroids (BRs) against Cr-induced stress in soybean plants. Herein, the morpho-physiological, biochemical, and molecular responses of soybean cultivars with/without foliar application of BRs under Cr toxicity were intensely investigated. Our outcomes deliberated that BRs application noticeably reduced Cr-induced phytotoxicity by lowering Cr uptake (37.7/43.63%), accumulation (63.92/81.73%), and translocation (26.23/38.14%) in XD-18/HD-19, plant tissues, respectively; besides, improved seed germination ratio, photosynthetic attributes, plant growth, and biomass, as well as prevented nutrient uptake inhibition under Cr stress, especially in HD-19 cultivar. Furthermore, BRs stimulated antioxidative defense systems, both enzymatic and non-enzymatic, the compartmentalization of ion chelation, diminished extra production of reactive oxygen species (ROS), and electrolyte leakage in response to Cr-induced toxicity, specifically in HD-19. In addition, BRs improved Cr stress tolerance in soybean seedlings by regulating the expression of stress-related genes involved in Cr accumulation, and translocation. Inclusively, by considering the above-mentioned biomarkers, foliar spray of BRs might be considered an effective inhibitor of Cr-induced damages in soybean cultivars, even in Cr polluted soil

    Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine

    No full text
    The chromium (Cr) induced phytotoxicity avowed the scientific community to develop stress mitigation strategies to restrain the Cr accumulation inside the food chain. Whereas, brassinosteroids (BRs), and spermine (SPM) are well-known growth-promoting phytohormones, which enhance the plants health, and resilient the toxic effects under stress conditions. Until now, their interactive role against Cr-mitigation is poorly known. Hence, we conducted the hydroponic experiment to perceive the behavior of seed primed with BRs, or/and SPM treatment against Cr disclosure in two different rice cultivars (CY927; sensitive, YLY689; tolerant). Our findings delineated that BRs (0.01 μM), or/and SPM (0.01 mM) remarkably alleviated Cr-induced phytotoxicity by improving the seed germination ratio, chlorophyll pigments, PSII system, total soluble sugar, and minimizing the MDA contents level, ROS extra generation, and electrolyte leakage through restricting the Cr accretion in roots, and shoots of both rice cultivars under Cr stress. Additionally, the BRs, or/and SPM modulated the antioxidant enzyme, and non-enzyme activities to reduce the Cr-induced cellular oxidative damage as well as maintained the ionic hemostasis in both rice cultivars, especially in YLY689. Concisely, enhanced the plants biomass and growth. Overall, our outcomes revealed that BRs and SPM interact positively to alleviate the Cr-induced damages in rice seedlings on the above-mentioned indices, and combine treatment is much more efficient than solely. Moreover, the effect of BRs, or/and SPM was more obvious in YLY689 than CY927 to hamper the oxidative stress, and boost the antioxidant capacity

    Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems

    No full text
    Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 µM) and NO (100 µM), applied alone or in combination, on the mitigation of stress induced by Cr (100 µM) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study

    Seed Priming with Spermine Mitigates Chromium Stress in Rice by Modifying the Ion Homeostasis, Cellular Ultrastructure and Phytohormones Balance

    No full text
    Chromium (Cr) is an important environmental constraint effecting crop productivity. Spermine (SPM) is a polyamine compound regulating plant responses to abiotic stresses. However, SPM-mediated tolerance mechanisms against Cr stress are less commonly explored in plants. Thus, current research was conducted to explore the protective mechanisms of SPM (0.01 mM) against Cr (100 &micro;M) toxicity in two rice cultivars, CY927 (sensitive) and YLY689 (tolerant) at the seedling stage. Our results revealed that, alone, Cr exposure significantly reduced seed germination, biomass and photosynthetic related parameters, caused nutrient and hormonal imbalance, desynchronized antioxidant enzymes, and triggered oxidative damage by over-accretion of reactive oxygen species (ROS), malondialdehyde (MDA) and electrolyte leakage in both rice varieties, with greater impairments in CY927 than YLY689. However, seed priming with SPM notably improved or reversed the above-mentioned parameters, especially in YLY689. Besides, SPM stimulated the stress-responsive genes of endogenous phytohormones, especially salicylic acid (SA), as confirmed by the pronounced transcript levels of SA-related genes (OsPR1, OsPR2 and OsNPR1). Our findings specified that SPM enhanced rice tolerance against Cr toxicity via decreasing accumulation of Cr and markers of oxidative damage (H2O2, O2&bull;&minus; and MDA), improving antioxidant defense enzymes, photosynthetic apparatus, nutrients and phytohormone balance

    Validating a Phenomenological Mathematical Model for Public Health and Safety Interventions Influencing the Evolutionary Stages of Recent Outbreak for Long-Term and Short-Term Domains in Pakistan

    Get PDF
    During the outbreak of an epidemic, it becomes significantly essential to monitor the effects of containment measures and forecast the outbreak, including the epidemic peak. Many countries have either implemented strict lockdown to counter the spread of coronavirus disease or taken necessary preventive measures across the world to reduce the outbreak of this epidemic war. Several epidemic models have been presented across the world to examine the effects of public health-related strategies on mitigating the spread of current infectious disease, yet no reputable model has been presented for Pakistan as well as other South-Asian developing countries as per the authors’ knowledge. In this research, an actual coronavirus prediction in Pakistan is presented, which may guide the decision-makers as to how this pandemic has spread across the country and how it can be controlled. Furthermore, in the absence of targeted medicines, the analysis helps to develop a precise plan for the eradication of the outbreak by adopting the calculated steps at the right time. The mathematical phenomenological models have been adopted in this study to predict, project, and simulate the overall affected cases reflected due to the recent outbreak in Pakistan. These models predict the expected growth, and the estimated results are almost well matched with the real cases. Through the calibration of parameters and analyzing the current situation, forecast for the appearance of new cases in Pakistan is reported till the end of this year. The constant level of number of patients and time to reach specific levels are also reported through the simulations. The drastic conditions are also discussed which may occur if all the preventive restraints are removed. This research quantitatively describes the significant characteristics of the spread of corona cases. It acknowledges and provides an understanding of a short-term and long-term transmission of coronavirus outbreak in the country as three evolutionary phases. Therefore, this research provides a pathway to cope with the emerging threat of a severe outbreak in developing and nondeveloping countries
    corecore