191 research outputs found

    Projected precipitation changes within the Great Lakes and Western Lake Erie Basin: a multi‐model analysis of intensity and seasonality

    Full text link
    The Great Lakes region encompasses the largest freshwater lake network in the world and supports a diverse network of agriculture, transportation, and tourism. Recently, Lake Erie has experienced increased hypoxia events, which have been attributed to agricultural practices and changes in run‐off. Here we examine the projected changes in extreme precipitation events to address concerns regarding regional agriculture, surface run‐off, and subsequent water quality. Precipitation projections within the overall Great Lakes Basin and the Western Lake Erie Basin subregion are examined using climate model simulations of varying spatial resolutions to understand historical precipitation and projected future precipitation. We develop three model ensembles for the historical period (1980–1999) and the mid‐century (2041–2060) that cover a range of spatial resolutions and future emissions scenarios, including: (1) 12 global model members from the fifth Climate Model Intercomparison Project (CMIP5) using Representative Concentration Pathway (RCP) 8.5, (2) ten regional climate model (RCM) members from the North American Regional Climate Change Assessment Program driven by CMIP3 global models using the A2 emissions scenario, and (3) two high resolution RCM simulations (RCM4) driven by CMIP5 global models using the RCP 8.5 scenario. For the historical period, all model ensembles overestimate winter and spring precipitation, and many of the models simulate a summer drying that is not observed. At mid‐century, most of the models predict a 10–20% increase in precipitation depending on the time of year. Daily probability distribution functions from three model ensembles reveal spring seasonal increases in high precipitation event probabilities when compared to the historical period, suggesting an increase in the frequency of high intensity precipitation at mid‐century. Overall, the presence of lakes or higher spatial resolution does not ensure improved representation of historical processes, and more complex interactions between large‐scale dynamics, local feedbacks, and physical parameterizations drive the model spread.We examine extreme precipitation events in the Great Lakes and the Western Lake Erie Basin using global and regional climate model simulations of to understand historical precipitation and projected future mid‐century precipitation. At mid‐century, most models predict a 10–20% precipitation increase and an increase in the frequency of high intensity precipitation at mid‐century. The presence of lakes or higher spatial resolution does not ensure improved representation of precipitation and large‐scale dynamics, local feedbacks, and physical parameterizations drive the model spread.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139100/1/joc5128.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139100/2/joc5128_am.pd

    Whole-genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features

    Get PDF
    The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Ultrafast Red Light Activation of Synechocystis Phytochrome Cph1 Triggers Major Structural Change to Form the Pfr Signalling-Competent State

    Get PDF
    Phytochromes are dimeric photoreceptors that regulate a range of responses in plants and microorganisms through interconversion of red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Photoconversion between these states is initiated by light-driven isomerization of a bilin cofactor, which triggers protein structural change. The extent of this change, and how light-driven structural changes in the N-terminal photosensory region are transmitted to the C-terminal regulatory domain to initiate the signalling cascade, is unknown. We have used pulsed electron-electron double resonance (PELDOR) spectroscopy to identify multiple structural transitions in a phytochrome from Synechocystis sp. PCC6803 (Cph1) by measuring distances between nitroxide labels introduced into the protein. We show that monomers in the Cph1 dimer are aligned in a parallel 'head-to-head' arrangement and that photoconversion between the Pr and Pfr forms involves conformational change in both the N- and C-terminal domains of the protein. Cryo-trapping and kinetic measurements were used to probe the extent and temporal properties of protein motions for individual steps during photoconversion of Cph1. Formation of the primary photoproduct Lumi-R is not affected by changes in solvent viscosity and dielectric constant. Lumi-R formation occurs at cryogenic temperatures, consistent with their being no major structural reorganization of Cph1 during primary photoproduct formation. All remaining steps in the formation of the Pfr state are affected by solvent viscosity and dielectric constant and occur only at elevated temperatures, implying involvement of a series of long-range solvent-coupled conformational changes in Cph1. We show that signalling is achieved through ultrafast photoisomerization where localized structural change in the GAF domain is transmitted and amplified to cause larger-scale and slower conformational change in the PHY and histidine kinase domains. This hierarchy of timescales and extent of structural change orientates the histidine kinase domain to elicit the desired light-activated biological response

    Total Ankle Arthroplasty Survivorship: A Meta-analysis.

    No full text
    The gold standard for management of end-stage ankle arthritis was previously ankle arthrodesis; however, improvements in total ankle replacements are making this a more viable treatment option. The primary aim of this meta-analysis was to evaluate the survivorship of total ankle replacement implants currently in use. An extensive search strategy initially captured 20,842 citations that were evaluated for relevance. Abstract screening produced 97 articles to be read in entirety, of which 10 articles studying 1963 implants met all prospective inclusion criteria for analysis. Overall survivorship of all implants was 93.0% (95% confidence interval, 85.2-96.9) using a random effect model. There was significant heterogeneity between the studies (Q = 131.504). Meta-regression identified an inverse relationship between survivorship and study follow-up duration (p \u3c .0001). Furthermore, age (p = .36) and implant type (fixed-bearing [95.6%, 95% confidence interval, 85.9-98.7] versus mobile-bearing ]89.4%, 95% confidence interval, 79.6%-94.8%]) did not have a statistically significant impact on survivorship, p = .213. However, patients with higher preoperative functional scores had improved survivorship (p = .001). Complications were inconsistently reported with varied definitions. In order of reported frequency, complications were classified into technical error (28.15%), subsidence (16.89%), implant failure (13.28%), aseptic loosening (6.3%), intraoperative fracture (5.67%), wound problems (4.3%), deep infection (1%), and postoperative fracture (0.0001%). Overall study quality was low, with only 10% being prospective and 90% from nonregistry data. The results from this meta-analysis revealed a promising overall survivorship of current implants in use for total ankle replacement; however higher quality studies with standardized outcomes measures are needed

    The effect of solvent viscosity (η) on the lifetimes associated with the initial photoisomerization dynamics of the Pr state of Cph1.

    No full text
    <p>The lifetime values were obtained by fitting the decay at 673 nm, recorded over 350 ps (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052418#pone-0052418-g005" target="_blank">Figure 5B</a>), to 2 exponentials.</p

    PELDOR analysis of Cph1 conformations.

    No full text
    <p>PELDOR data obtained from spin-labeled <i>Synechocystis</i> PCC 6803 Cph1. Raw four-pulse ELDOR traces together with the third order polynomial function used to baseline the data (in red) are shown in the left hand panel, while the right hand panel shows the conjugate Fourier transforms of these data. (A) and (G). Pr form of the N-terminal photosensory region with spin-label at C371. (B) and (H). Pfr form of the N-terminal photosensory region with spin-label at C371. (C) and (I). Pr form of full-length Cph1 with spin-label at C371. (D) and (J). Pfr form of full-length Cph1 with spin-label at C371. (E) and (K). Pr form of full-length Cph1 with spin-label at C371 and N733C. (F) and (L). Pfr form of full-length Cph1 with spin-label at C371 and N733C. Pulse sequences and data processing are described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052418#s4" target="_blank">Materials and Methods</a>. Numbers in the right hand panel indicate Μ<sub>DD</sub> and distances referred to in the text.</p

    Characterization of the initial photoisomerization dynamics of the Pr state of Cph1.

    No full text
    <p>Cph1 was contained in a 5% sucrose solution and absorbance spectra recorded after photoexcitation with a laser pulse centred at ∌590 nm. (A) Transient absorption difference spectra at delay times of 1, 5, 10, 29, 60, 299, and 988 ps after excitation. (B) Kinetic transient at 673 nm (black squares) with a fit of the data to 2 exponentials shown in red.</p

    The effect of solvent on the rates of the slower steps in the Pr → Pfr photoconversion.

    No full text
    <p>The rate and amplitude of each step was measured at 293 K (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052418#s4" target="_blank">Materials and Methods</a>). The degree of solvent-coupled dynamics (σ) required for each step were obtained by fitting the viscosity-dependence of the rates to <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052418#pone.0052418.e002" target="_blank">equation 2</a> (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0052418#pone-0052418-g007" target="_blank">Figure 7</a>).</p
    • 

    corecore