76 research outputs found

    Topology-Aware Neighborhoods for Point-Based Simulation and Reconstruction

    Get PDF
    International audienceParticle based simulations are widely used in computer graphics. In this field, several recent results have improved the simula- tion itself or improved the tension of the final fluid surface. In current particle based implementations, the particle neighborhood is computed by considering the Euclidean distance between fluid particles only. Thus particles from different fluid components interact, which generates both local incorrect behavior in the simulation and blending artifacts in the reconstructed fluid sur- face. Our method introduces a better neighborhood computation for both the physical simulation and surface reconstruction steps. We track and store the local fluid topology around each particle using a graph structure. In this graph, only particles within the same local fluid component are neighbors and other disconnected fluid particles are inserted only if they come into contact. The graph connectivity also takes into account the asymmetric behavior of particles when they merge and split, and the fluid surface is reconstructed accordingly, thus avoiding their blending at distance before a merge. In the simulation, this neighborhood information is exploited for better controlling the fluid density and the force interactions at the vicinity of its boundaries. For instance, it prevents the introduction of collision events when two distinct fluid components are crossing without contact, and it avoids fluid interactions through thin waterproof walls. This leads to an overall more consistent fluid simulation and reconstruction

    Soft Textured Shadow Volume

    Get PDF
    International audienceEfficiently computing robust soft shadows is a challenging and time consuming task. On the one hand, the quality of image-based shadows is inherently limited by the discrete property of their framework. On the other hand, object-based algorithms do not exhibit such discretization issues but they can only efficiently deal with triangles having a constant transmittance factor. This paper addresses this limitation. We propose a general algorithm for the computation of robust and accurate soft shadows for triangles with a spatially varying transmittance. We then show how this technique can be efficiently included into object-based soft shadow algorithms. This results in unified object-based frameworks for computing robust direct shadows for both standard and perforated triangles in fully animated scenes

    Matisse : Painting 2D regions for Modeling Free-Form Shapes

    Get PDF
    International audienceThis paper presents "Matisse", an interactive modeling system aimed at providing the public with a very easy way to design free-form 3D shapes. The user progressively creates a model by painting 2D regions of arbitrary topology while freely changing the view-point and zoom factor. Each region is converted into a 3D shape, using a variant of implicit modeling that fits convolution surfaces to regions with no need of any optimization step. We use intuitive, automatic ways of inferring the thickness and position in depth of each implicit primitive, enabling the user to concentrate only on shape design. When he or she paints partly on top of an existing primitive, the shapes are blended in a local region around the intersection, avoiding some of the well known unwanted blending artifacts of implicit surfaces. The locality of the blend depends on the size of smallest feature, enabling the user to enhance large, smooth primitives with smaller details without blurring the latter away. As the results show, our system enables any unprepared user to create 3D geometry in a very intuitive way

    Shape Modeling by Sketching using Convolution Surfaces

    Get PDF
    International audienceThis paper proposes a user-friendly modeling system that interactively generates 3D organic-like shapes from user drawn sketches. A skeleton, in the form of a graph of branching polylines and polygons, is first extracted from the user's sketch. The 3D shape is then defined as a convolution surface generated by this skeleton. The skeleton's resolution is adapted according to the level of detail selected by the user. The subsequent 2D strokes are used to infer new object parts, which are combined with the existing shape using CSG operators. We propose an algorithm for computing a skeleton defined as a connected graph of polylines and polygons. To combine the primitives we propose precise CSG operators for a convolution surfaces blending hierarchy. Our new formulation has the advantage of requiring no optimization step for fitting the 3D shape to the 2D contours. This yields interactive performances and avoids any non-desired oscillation of the reconstructed surface. As our results show, our system allows nonexpert users to generate a wide variety of free form shapes with an easy to use sketch-based interface

    An Efficient Trim Structure for Rendering Large B-Rep Models

    Get PDF
    International audienceWe present a multiresolution trim structure for fast and accurate B-Rep model visualization. To get a good tradeoff between performance and visual accuracy, we propose to use a vectorial but approximated representation of the model that allows efficient, real-time GPU exploitation. Our structure, based on a quadtree, enables us to do shallow lookups for distant fragments. For closeups, we leverage hardware tessellation. We get interactive frame rates for models that consists of hundreds of thousands of B-Rep faces, regardless of the zoom level

    DĂ©formation de la peau d'un personnage avec prise en compte des contacts

    Get PDF
    National audienceLors de l'animation d'un maillage représentant la peau d'un personnage ou d'un animal par exemple, des techniques dites de skinning sont utilisées pour le déformer au niveau des articulations. Bien que très populaires dans l'industrie pour leur très faible coût d'évaluation, les techniques de skinning géométrique comme le LBS (Linear Blending Skinning) ou les dual quaternions, ne permettent pas d'imiter de façon crédible les déformations des membres. Pour mieux capturer le comportement de la peau, d'autres méthodes basées seulement sur le maillage, utilisent des calculs coûteux comme la détection de collisions ou la correction de volume. Toutefois ces approches restent seulement adaptées au rendu hors ligne. Nous présentons la première méthode temps réel produisant une déformation du maillage en prenant en compte le contact de la peau et, éventuellement, le gonflement des muscles. Nous proposons d'utiliser de façon conjointe le maillage et une représentation volumique. Le maillage est approximé avec une surface implicite qui nous permet de le déformer de façon plausible tout en traitant les collisions et en conservant les détails du maillage

    Une structure de découpe efficace pour l'affichage de grands modèles B-Rep

    Get PDF
    National audienceNous présentons une structure de découpe multirésolution pour l'affichage rapide et précis de modèles B-Rep. Nous proposons d'utiliser une représentation de la découpe de face basée sur un quadtree, autorisant une gestion efficace par le GPU. Ce quadtree contient des références à des courbes de découpe qui sont utilisées dans un fragment shader pour effectuer la classification de point d'une manière implicite. La façon dont sont stockées les informations multirésolution dans le quadtree nous permet de réduire les accès à notre structure lorsque les fragments sont distants de la caméra. Pour les objets en avant plan, nous nous appuyons sur la tessellation matérielle pour améliorer les performances, en réduisant la quantité de calcul à effectuer pour chaque fragment. Nous obtenons un affichage intéractif pour de très gros modèles comprenant des centaines de milliers de faces B-Rep, quel que soit le niveau de zoom

    Modeling 3D animals from a side-view sketch

    Get PDF
    Shape Modeling International 2014International audienceUsing 2D contour sketches as input is an attractive solution for easing the creation of 3D models. This paper tackles the problem of creating 3D models of animals from a single, side-view sketch. We use the a priori assumptions of smoothness and structural symmetry of the animal about the sagittal plane to inform the 3D reconstruction. Our contributions include methods for identifying and inferring the contours of shape parts from the input sketch, a method for identifying the hierarchy of these structural parts including the detection of approximate symmetric pairs, and a hierarchical algorithm for positioning and blending these parts into a consistent 3D implicit-surface-based model. We validate this pipeline by showing that a number of plausible animal shapes can be automatically constructed from a single sketch

    A Gradient-Based Implicit Blend

    Get PDF
    International audienceWe introduce a new family of binary composition operators that solves four major problems of constructive implicit modeling: suppressing bulges when two shapes merge, avoiding unwanted blending at a distance, ensuring that the resulting shape keeps the topology of the union, and enabling sharp details to be added without being blown up. The key idea is that field functions should not only be combined based on their values, but also on their gradients.We implement this idea through a family of C1 composition operators evaluated on the GPU for efficiency, and illustrate it by applications to constructive modeling and animation

    Implicit Skinning: Real-Time Skin Deformation with Contact Modeling

    Get PDF
    SIGGRAPH 2013 Conference ProceedingsInternational audienceGeometric skinning techniques, such as smooth blending or dualquaternions, are very popular in the industry for their high performances, but fail to mimic realistic deformations. Other methods make use of physical simulation or control volume to better capture the skin behavior, yet they cannot deliver real-time feedback. In this paper, we present the first purely geometric method handling skin contact effects and muscular bulges in real-time. The insight is to exploit the advanced composition mechanism of volumetric, implicit representations for correcting the results of geometric skinning techniques. The mesh is first approximated by a set of implicit surfaces. At each animation step, these surfaces are combined in real-time and used to adjust the position of mesh vertices, starting from their smooth skinning position. This deformation step is done without any loss of detail and seamlessly handles contacts between skin parts. As it acts as a post-process, our method fits well into the standard animation pipeline. Moreover, it requires no intensive computation step such as collision detection, and therefore provides real-time performances
    • …
    corecore