12 research outputs found

    3D Survey in Extreme Environment: The Case Study of LaetoliHominin Footprints in Tanzania

    Get PDF
    Many cultural assets are in risky situations and they are destined to disappear. Sometimes problems are caused bythe anthropic component (e.g. wars) or by natural disasters (e.g. earthquakes and landslides). At other times thecause of deterioration is due to the slow and inexorable action of atmospheric agents and other natural factorspresent in extreme areas, where preservation of Cultural Heritage is more complex.This contribution deals with 3D documentation of paleontological excavations in extreme contexts that arecharacterized by unfavorable climatic conditions, limited instrumentation and little time available. In particular, thecontribution is focused on the search for a good working procedure which, despite the problems mentioned above,can lead to valid results in terms of accuracy and precision, so that subsequent scientific studies are notcompromised. The proposed case study concerns the recent discovery of fossil footprints at the Site S in Laetoli,within the Ngorongoro Conservation Area (Tanzania), which is a UNESCO World Heritage Site. With the newdiscovery of Site S it was necessary to implement a 3D survey operative protocol with limited equipment and in avery short time. The 3D models, obtained through the “Structure from Motion” (SfM) technique and topographicsupport, were used to perform morphological and morphometric investigations on the new footprints. Through theanalysis it was possible to estimate height and weight of the footprint makers (hominins of the speciesAustralopithecus afarensis). The collected evidence supports marked intraspecific variation in this species, pointingout the occurrence of a considerable difference in size between sexes and suggesting inferences on reproductivebehavior and social structure of these ancient bipedal hominins.The contribution shows how important is to obtain good 3D documentation, even in extreme environment, in orderto reach reliable results for scientific analysis

    Frozen in the Ashes

    Get PDF
    Fossil footprints are very useful palaeontological tools. Their features can help to identify their makers and also to infer biological as well as behavioural information. Nearly all the hominin tracks discovered so far are attributed to species of the genus Homo. The only exception is represented by the trackways found in the late 1970s at Laetoli, which are thought to have been made by three Australopithecus afarensis individuals about 3.66 million years ago. We have unearthed and described the footprints of two more individuals at Laetoli, who were moving on the same surface, in the same direction, and probably in the same timespan as the three found in the 1970s, apparently all belonging to a single herd of bipedal hominins walking from south to north. The estimated stature of one of the new individuals (about 1.65 m) exceeds those previously published for Au. afarensis. This evidence supports the existence of marked morphological variation within the species. Considering the bipedal footprints found at Laetoli as a whole, we can hypothesize that the tallest individual may have been the dominant male, the others smaller females and juveniles. Thus, considerable differences may have existed between sexes in these human ancestors, similar to modern gorillas

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF

    Il Futuro della Cybersecurity in Italia: Ambiti Progettuali Strategici

    Get PDF

    Il Futuro della Cybersecurity in Italia: Ambiti Progettuali Strategici

    Get PDF
    Il presente volume nasce come continuazione del precedente, con l’obiettivo di delineare un insieme di ambiti progettuali e di azioni che la comunità nazionale della ricerca ritiene essenziali a complemento e a supporto di quelli previsti nel DPCM Gentiloni in materia di sicurezza cibernetica, pubblicato nel febbraio del 2017. La lettura non richiede particolari conoscenze tecniche; il testo è fruibile da chiunque utilizzi strumenti informatici o navighi in rete. Nel volume vengono considerati molteplici aspetti della cybersecurity, che vanno dalla definizione di infrastrutture e centri necessari a organizzare la difesa alle azioni e alle tecnologie da sviluppare per essere protetti al meglio, dall’individuazione delle principali tecnologie da difendere alla proposta di un insieme di azioni orizzontali per la formazione, la sensibilizzazione e la gestione dei rischi. Gli ambiti progettuali e le azioni, che noi speriamo possano svilupparsi nei prossimi anni in Italia, sono poi accompagnate da una serie di raccomandazioni agli organi preposti per affrontare al meglio, e da Paese consapevole, la sfida della trasformazione digitale. Le raccomandazioni non intendono essere esaustive, ma vanno a toccare dei punti che riteniamo essenziali per una corretta implementazione di una politica di sicurezza cibernetica a livello nazionale. Politica che, per sua natura, dovrà necessariamente essere dinamica e in continua evoluzione in base ai cambiamenti tecnologici, normativi, sociali e geopolitici. All’interno del volume, sono riportati dei riquadri con sfondo violetto o grigio; i primi sono usati nel capitolo introduttivo e nelle conclusioni per mettere in evidenza alcuni concetti ritenuti importanti, i secondi sono usati negli altri capitoli per spiegare il significato di alcuni termini tecnici comunemente utilizzati dagli addetti ai lavori. In conclusione, ringraziamo tutti i colleghi che hanno contribuito a questo volume: un gruppo di oltre 120 ricercatori, provenienti da circa 40 tra Enti di Ricerca e Università, unico per numerosità ed eccellenza, che rappresenta il meglio della ricerca in Italia nel settore della cybersecurity. Un grazie speciale va a Gabriella Caramagno e ad Angela Miola che hanno contribuito a tutte le fasi di produzione del libro. Tra i ringraziamenti ci fa piacere aggiungere il supporto ottenuto dai partecipanti al progetto FILIERASICURA

    A simulation model for the saturable reactor

    No full text

    Impoundment effects in the population of Auchenipterus osteomystax (Siluriformes: Auchenipteridae): a Neotropical reservoir case

    No full text
    New impoundments provide opportunities to check whether species that present enough feeding flexibility in natural conditions may take advantage of this situation and, without reproductive restriction, can occupy the most conspicuous habitat in a large reservoir (open areas) and present higher success in the colonization of the new environment. We examined variations in the abundance and feeding of A. osteomystax in two environments, one natural (Sinha Mariana floodplain lake) and one dammed (Manso Reservoir), during two periods: the first year after the filling phase and three years later. Our goal was to evaluate the occupation of the new hábitat (Manso Reservoir), by this species, as well as to test the hypothesis that in the reservoir, unlike the natural environment, there are remarkable changes in diet between the periods. Fish were sampled monthly in the floodplain lake and in the reservoir during two annual periods using gillnets. To evaluate the differences in abundance of A. osteomystax we employed the Kruskal -Wallis test, and the diet analysis was carried out using frequency of occurrence and volumetric methods. Temporal differences in the diet were tested by Kruskal-Wallis test using the scores from a detrended correspondence analysis. A. osteomystax was significantly more abundant in the floodplain lake, where the captures were higher than in the reservoir in almost all months analyzed, and significant variations in abundance between the two periods were not recorded in either the reservoir or the floodplain lake. The diet variation between the two periods, which had a time lag of three years between them, was much less pronounced in the natural environment, where the resource availability is essentially regulated by seasonality. Thus, our hypothesis was accepted; that is, the interannual variations in the diet of A. osteomystax are more relevant in an artificial environment than in a natural one. Rev. Biol. Trop. 60 (2): 699-708. Epub 2012 June 01

    3D survey in extreme environment. The case study of Laetoli hominin footprints in Tanzania

    Get PDF
    Many cultural assets are in risky situations and they are destined to disappear. Sometimes problems are caused by the anthropic component (e.g. wars) or by natural disasters (e.g. earthquakes and landslides). At other times the cause of deterioration is due to the slow and inexorable action of atmospheric agents and other natural factors present in extreme areas, where preservation of Cultural Heritage is more complex. This contribution deals with 3D documentation of paleontological excavations in extreme contexts that are characterized by unfavorable climatic conditions, limited instrumentation and little time available. In particular, the contribution is focused on the search for a good working procedure which, despite the problems mentioned above, can lead to valid results in terms of accuracy and precision, so that subsequent scientific studies are not compromised. The proposed case study concerns the recent discovery of fossil footprints at the Site S in Laetoli, within the Ngorongoro Conservation Area (Tanzania), which is a UNESCO World Heritage Site. With the new discovery of Site S it was necessary to implement a 3D survey operative protocol with limited equipment and in a very short time. The 3D models, obtained through the “Structure from Motion” (SfM) technique and topographic support, were used to perform morphological and morphometric investigations on the new footprints. Through the analysis it was possible to estimate height and weight of the footprint makers (hominins of the species Australopithecus afarensis). The collected evidence supports marked intraspecific variation in this species, pointing out the occurrence of a considerable difference in size between sexes and suggesting inferences on reproductive behavior and social structure of these ancient bipedal hominins. The contribution shows how important is to obtain good 3D documentation, even in extreme environment, in order to reach reliable results for scientific analysis
    corecore