19 research outputs found

    Genetic Burden of TNNI3K in Diagnostic Testing of Patients With Dilated Cardiomyopathy and Supraventricular Arrhythmias

    Get PDF
    BACKGROUND: Genetic variants in TNNI3K (troponin-I interacting kinase) have previously been associated with dilated cardiomyopathy (DCM), cardiac conduction disease, and supraventricular tachycardias. However, the link between TNNI3K variants and these cardiac phenotypes shows a lack of consensus concerning phenotype and protein function. METHODS: We describe a systematic retrospective study of a cohort of patients undergoing genetic testing for cardiac arrhythmias and cardiomyopathy including TNNI3K. We further performed burden testing of TNNI3K in the UK Biobank. For 2 novel TNNI3K variants, we tested cosegregation. TNNI3K kinase function was estimated by TNNI3K autophosphorylation assays.RESULTS: We demonstrate enrichment of rare coding TNNI3K variants in DCM patients in the Amsterdam cohort. In the UK Biobank, we observed an association between TNNI3K missense (but not loss-of-function) variants and DCM and atrial fibrillation. Furthermore, we demonstrate genetic segregation for 2 rare variants, TNNI3K-p.Ile512Thr and TNNI3K-p.His592Tyr, with phenotypes consisting of DCM, cardiac conduction disease, and supraventricular tachycardia, together with increased autophosphorylation. In contrast, TNNI3K-p.Arg556_Asn590del, a likely benign variant, demonstrated depleted autophosphorylation. CONCLUSIONS: Our findings demonstrate an increased burden of rare coding TNNI3K variants in cardiac patients with DCM. Furthermore, we present 2 novel likely pathogenic TNNI3K variants with increased autophosphorylation, suggesting that enhanced autophosphorylation is likely to drive pathogenicity.</p

    Expanding the genetic and phenotypic spectrum of ACTA2-related vasculopathies in a Dutch cohort

    Get PDF
    Purpose: Heterozygous pathogenic/likely pathogenic (P/LP) variants in the ACTA2 gene confer a high risk for thoracic aortic aneurysms and aortic dissections. This retrospective multicenter study elucidates the clinical outcome of ACTA2-related vasculopathies. Methods: Index patients and relatives with a P/LP variant in ACTA2 were included. Data were collected through retrospective review of medical records using a standardized questionnaire. Results: A total of 49 individuals from 28 families participated in our study. In total, 20 different ACTA2 variants were detected. Aortic events occurred in 65% of the cases (78.6% index patients and 47.6% relatives). Male sex and hypertension emerged as significantly associated with aortic events. Of 20 individuals, 5 had an aortic diameter of <45 mm (1.77 inches) at the time of the type A dissection. Mean age at first aortic event was 49.0 ± 12.4 years. Severe surgical complications for type A and type B dissection occurred in 25% and 16.7% of the cases and in-hospital mortality rates were 9.5% and 0%, respectively. Conclusion: P/LP ACTA2 variants are associated with an increased risk for an aortic event and age-related penetrance, which emphasizes the importance of early recognition of the disease. Caregivers should be aware of the risk for aortic dissections, even in individuals with aortic diameters within the normal range

    The genetic basis of apparently idiopathic ventricular fibrillation:A retrospective overview

    Get PDF
    Aims: During the diagnostic work-up of patients with idiopathic ventricular fibrillation (VF), next-generation sequencing panels can be considered to identify genotypes associated with arrhythmias. However, consensus for gene panel testing is still lacking, and variants of uncertain significance (VUS) are often identified. The aim of this study was to evaluate genetic testing and its results in idiopathic VF patients. Methods and results: We investigated 419 patients with available medical records from the Dutch Idiopathic VF Registry. Genetic testing was performed in 379 (91%) patients [median age at event 39 years (27-51), 60% male]. Single-gene testing was performed in 87 patients (23%) and was initiated more often in patients with idiopathic VF before 2010. Panel testing was performed in 292 patients (77%). The majority of causal (likely) pathogenic variants (LP/P, n = 56, 15%) entailed the DPP6 risk haplotype (n = 39, 70%). Moreover, 10 LP/P variants were found in cardiomyopathy genes (FLNC, MYL2, MYH7, PLN (two), TTN (four), RBM20), and 7 LP/P variants were identified in genes associated with cardiac arrhythmias (KCNQ1, SCN5A (2), RYR2 (four)). For eight patients (2%), identification of an LP/P variant resulted in a change of diagnosis. In 113 patients (30%), a VUS was identified. Broad panel testing resulted in a higher incidence of VUS in comparison to single-gene testing (38% vs. 3%, P &lt; 0.001). Conclusion: Almost all patients from the registry underwent, albeit not broad, genetic testing. The genetic yield of causal LP/P variants in idiopathic VF patients is 5%, increasing to 15% when including DPP6. In specific cases, the LP/P variant is the underlying diagnosis. A gene panel specifically for idiopathic VF patients is proposed.</p

    Genetic Evaluation of A Nation-Wide Dutch Pediatric DCM Cohort:The Use of Genetic Testing in Risk Stratification

    Get PDF
    BACKGROUND: This study aimed to describe the current practice and results of genetic evaluation in Dutch children with dilated cardiomyopathy and to evaluate genotype-phenotype correlations that may guide prognosis. METHODS: We performed a multicenter observational study in children diagnosed with dilated cardiomyopathy, from 2010 to 2017. RESULTS: One hundred forty-four children were included. Initial diagnostic categories were idiopathic dilated cardiomyopathy in 67 children (47%), myocarditis in 23 (16%), neuromuscular in 7 (5%), familial in 18 (13%), inborn error of metabolism in 4 (3%), malformation syndrome in 2 (1%), and "other" in 23 (16%). Median follow-up time was 2.1 years [IQR 1.0-4.3]. Hundred-seven patients (74%) underwent genetic testing. We found a likely pathogenic or pathogenic variant in 38 children (36%), most often in MYH7 (n = 8). In 1 patient initially diagnosed with myocarditis, a pathogenic LMNA variant was found. During the study, 39 patients (27%) reached study endpoint (SE: all-cause death or heart transplantation). Patients with a likely pathogenic or pathogenic variant were more likely to reach SE compared with those without (hazard ratio 2.8; 95% CI 1.3-5.8, P = 0.007), while transplant-free survival was significantly lower (P = 0.006). Clinical characteristics at diagnosis did not differ between the 2 groups. CONCLUSIONS: Genetic testing is a valuable tool for predicting prognosis in children with dilated cardiomyopathy, with carriers of a likely pathogenic or pathogenic variant having a worse prognosis overall. Genetic testing should be incorporated in clinical work-up of all children with dilated cardiomyopathy regardless of presumed disease pathogenesis

    The arrhythmogenic cardiomyopathy phenotype associated with PKP2 c.1211dup variant

    Get PDF
    Background: The arrhythmogenic cardiomyopathy (ACM) phenotype, with life-threatening ventricular arrhythmias and heart failure, varies according to genetic aetiology. We aimed to characterise the phenotype associated with the variant c.1211dup (p.Val406Serfs*4) in the plakophilin‑2 gene (PKP2) and compare it with previously reported Dutch PKP2 founder variants. Methods: Clinical data were collected retrospectively from medical records of 106 PKP2 c.1211dup heterozygous carriers. Using data from the Netherlands ACM Registry, c.1211dup was compared with 3 other truncating PKP2 variants (c.235C &gt; T (p.Arg79*), c.397C &gt; T (p.Gln133*) and c.2489+1G &gt; A (p.?)). Results: Of the 106 carriers, 47 (44%) were diagnosed with ACM, at a mean age of 41 years. By the end of follow-up, 29 (27%) had experienced sustained ventricular arrhythmias and 12 (11%) had developed heart failure, with male carriers showing significantly higher risks than females on these endpoints (p &lt; 0.05). Based on available cardiac magnetic resonance imaging and echocardiographic data, 46% of the carriers showed either right ventricular dilatation and/or dysfunction, whereas a substantial minority (37%) had some form of left ventricular involvement. Both geographical distribution of carriers and haplotype analysis suggested PKP2 c.1211dup to be a founder variant originating from the South-Western coast of the Netherlands. Finally, a Cox proportional hazards model suggested significant differences in ventricular arrhythmia–free survival between 4 PKP2 founder variants, including c.1211dup. Conclusions: The PKP2 c.1211dup variant is a Dutch founder variant associated with a typical right-dominant ACM phenotype, but also left ventricular involvement, and a possibly more severe phenotype than other Dutch PKP2 founder variants.</p

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries

    Get PDF
    Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. Objective: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. Methods and Results: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. Conclusions: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Common Genetic Variants Contribute to Risk of Transposition of the Great Arteries

    Get PDF
    RATIONALE: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored. OBJECTIVE: We sought to study the role of common single nucleotide polymorphisms (SNPs) in risk for D-TGA. METHODS AND RESULTS: We conducted a genome-wide association study in an international set of 1,237 patients with D-TGA and identified a genome-wide significant susceptibility locus on chromosome 3p14.3, which was subsequently replicated in an independent case-control set (rs56219800, meta-analysis P=8.6x10-10, OR=0.69 per C allele). SNP-based heritability analysis showed that 25% of variance in susceptibility to D-TGA may be explained by common variants. A genome-wide polygenic risk score derived from the discovery set was significantly associated to D-TGA in the replication set (P=4x10-5). The genome-wide significant locus (3p14.3) co-localizes with a putative regulatory element that interacts with the promoter of WNT5A, which encodes the Wnt Family Member 5A protein known for its role in cardiac development in mice. We show that this element drives reporter gene activity in the developing heart of mice and zebrafish and is bound by the developmental transcription factor TBX20. We further demonstrate that TBX20 attenuates Wnt5a expression levels in the developing mouse heart. CONCLUSIONS: This work provides support for a polygenic architecture in D-TGA and identifies a susceptibility locus on chromosome 3p14.3 near WNT5A. Genomic and functional data support a causal role of WNT5A at the locus

    Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome

    Get PDF
    Purpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome

    Quality of life in depression: Daily life determinants and variability

    No full text
    Identifying daily influences on subjective well-being can be helpful in understanding the burden of depression. This study used experience sampling methodology (ESM) to examine the contribution of mood states, physical complaints and enjoyment of activities to a momentary measure of quality of life (mQoL), assessed by responses to the question 'In general, how is it going with you right now?' Sixty-three depressed and 22 healthy control subjects completed ESM self-reports during daily activities, 10 times per day for 6 days. In comparison to control subjects, depressed subjects had lower levels of mQoL, positive mood, and enjoyment of activity, higher negative mood, and more frequent and severe complaints. Depressed subjects were more likely than control subjects to be doing nothing and less likely to be engaged in work. Multilevel regression analysis showed that positive mood and enjoyment of the current activity were associated with higher mQoL, whereas negative mood and complaints were associated with lower mQoL. In depressed subjects, mQoL was more variable over time than in control subjects. In contrast to the ESM results, only negative mood and depression were significant predictors of global measures of QoL. We conclude that QoL has important situational determinants that can in part explain the impact of depression on daily functioning and well-being. Copyright (C) 1999 Elsevier Science Ireland Ltd

    Pathogenic effect of a TGFBR1 mutation in a family with Loeys–Dietz syndrome

    No full text
    Background: Thoracic aortic aneurysms and dissections (TAAD) may have a heritable cause in up to 20% of cases. We aimed to investigate the pathogenic effect of a TGFBR1 mutation in relation to TAAD. Methods: Co-segregation analysis was performed followed by functional investigations, including myogenic transdifferentiation. Results: The c.1043G>A TGFBR1 mutation was found in the index patient, in a deceased brother, and in five presymptomatic family members. Evidence for pathogenicity was found by the predicted damaging effect of this mutation and the co-segregation in the family. Functional analysis with myogenic transdifferentiation of dermal fibroblasts to smooth muscle-like cells, revealed increased myogenic differentiation in patient cells with the TGFBR1 mutation, shown by a higher expression of myogenic markers ACTA2, MYH11 and CNN1 compared to cells from healthy controls. Conclusion: Our findings confirm the pathogenic effect of the TGFBR1 mutation in causing TAAD in Loeys–Dietz syndrome and show increased myogenic differentiation of patient fibroblasts
    corecore