47 research outputs found

    Cefiderocol for Carbapenem-Resistant Bacteria: Handle with Care! A Review of the Real-World Evidence

    Get PDF
    (1) Background: healthcare-associated infections are one of the most frequent adverse events in healthcare delivery worldwide. Several antibiotic resistance mechanisms have been developed, including those to carbapenemase. Cefiderocol (CFD) is a novel siderophore cephalosporin designed to treat carbapenem-resistant bacteria. (2) Methods: we performed a systematic review of all cases reported in the literature to outline the existing evidence. We evaluated real-world evidence studies of CFD in the treatment of carbapenem-resistant (CR) bacteria. (3) Results: a total of 19 publications treating cases of infection by CR bacteria were included. The three most frequent CR pathogens were Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. A regimen of 2 g every 8 h was most frequently adopted for CFD with a mean treatment duration of 25.6 days. CFD was generally well tolerated, with fewer side effects. The success rate of CFD therapy was satisfactory and almost 70% of patients showed clinical recovery; of these, nearly half showed negative blood cultures and infection-free status. (4) Conclusions: This review indicates that CFD is active against important GN organisms including Enterobacteriaceae, P. aeruginosa, and A. baumannii. CFD seems to have a safe profile

    Cell surface protein detection with immunogold labelling in ESEM: optimisation of the method and semi-quantitative analysis.

    No full text
    In this work we used a combination of immunogold labelling (IGL) and environmental scanning electron microscopy (ESEM) to detect the presence of a protein on the cell surface. To achieve this purpose we chose as experimental system 3T3 Swiss Albino Mouse Fibroblasts and galectin-3. This protein, whose sub-cellular distribution is still under discussion, is involved in a large number of cell physiological and pathological processes. IGL technique has been utilised by many authors in combination with SEM and TEM to obtain the identification/ localisation of receptors and antigens, both in cells and tissues. ESEM represents an important tool in biomedical research, since it does not require any severe processing of the sample, lowering the risk of generating artefacts and interfere with IGL procedure. The absence of metal coating could yield further advantages for our purpose as the labelling detection is based on the atomic number difference between Nanogold spheres and the biological material. Using the gaseous secondary electron detector (GSED) compositional contrast is easily revealed by the backscattered electrons component of the signal. In spite of this fact, only few published papers present a combination of ESEM and IGL. Hereby we present our method, optimised to improve the intensity and the specificity of the labelling signal, in order to obtain a semi-quantitative evaluation of the labelling signa

    Sleeve gastrectomy to treat concomitant polycystyc ovary syndrome, insulin and leptin resistance in a 27-years morbidly obese woman unresponsive to insulin-sensitizing drugs: A 3-year follow-up

    Get PDF
    Introduction: Insulin resistance (IR), leptin resistance (LR), and polycystic ovary syndrome (PCOS) commonly coexists with obesity. IR and PCOS are often successfully treated with the use of insulin-sensitizing drugs (ISDs). However, some women are poorly responsive or intolerant to them. If we additionally consider that currently no medical treatment for LR exists, it is crucial for the physician to find different therapeutic ways to treat patients with such multifactorial endocrinopathy. Presentation of case: We present a case where sleeve gastrectomy (SG) was applied to a 27-year-old obese woman affected by concomitant IR, LR and PCOS, and unresponsive to ISDs. At three years from surgery the patient is now 71.6 kg. More importantly, her levels of insulin and leptin started to improve at postoperative month 6 and became normal at postoperative month 24. Patient’s ovaries that at baseline had characteristic aspects related to PCOS, at postoperative month 36 were normal. Discussion: SG is one of the most commonly performed bariatric procedures. The literature has moved away from labeling SG as a purely restrictive procedure, as its interactions with several hormones (ghrelin, leptin, insulin, etc.) are now recognized. Conclusion: In the present report, SG was applied to resolve an intricate endocrinological framework confirming its therapeutic value not only in determining weight loss but also as endocrine/metabolic surgery able to treat multifactorial endocrinopathy. The underlying molecular mechanisms contributing to these benefits remain largely undetermined, despite offering tremendous potential to reveal new targets for therapeutic intervention, mostly in those patients unresponsive to classical pharmacotherapy

    Use of polycaprolactone (PCL) as scaffolds for the regeneration of nerve tissue

    No full text
    Adipose tissue is an easily accessible source of stem cells for use in tissue regenerative medicine. In the literature, different methods have been used to stimulate acquisition of neuronal characteristics by adipose-derived stem cells (ADSC). Herein we study the growth and neuronal differentiation potential of ADSC seeded onto a porous polycaprolactone (PCL) scaffold. The objective of this study is to demonstrate that PCL can be used as a scaffold to support reconstruction of new nervous tissue using adipose stem cells. We have previously shown that undifferentiated ADSC adhere and grow on PCL. Herein we show that, after culture on PCL in neuronal differentiation medium, ADSC expressed molecular markers characteristic of neuronal cells (β-tubulin-III, Neuron-Specific Enolase (NSE), Nestin) and secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF). This study suggests that PCL can be used as a scaffold to generate nervous tissue in vitro. PLC has excellent mechanical properties and a slow degradation rate. Moreover, on the basis of our results, we propose that PCL could be used for to make in vitro, scaffold coated with neuronal cells derived from Adipose stem cells (ADSC). Neuronal cells-coated PCL could find several applications to replace damaged area of ​​the body; for example, a possible use could be the generation of nerves. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.Adipose tissue is an easily accessible source of stem cells for use in tissue regenerative medicine. In the literature, different methods have been used to stimulate acquisition of neuronal characteristics by adipose-derived stem cells (ADSC). Herein we study the growth and neuronal differentiation potential of ADSC seeded onto a porous polycaprolactone (PCL) scaffold. The objective of this study is to demonstrate that PCL can be used as a scaffold to support reconstruction of new nervous tissue using adipose stem cells. We have previously shown that undifferentiated ADSC adhere and grow on PCL. Herein we show that, after culture on PCL in neuronal differentiation medium, ADSC expressed molecular markers characteristic of neuronal cells (β-tubulin-III, Neuron-Specific Enolase (NSE), Nestin) and secrete brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF). This study suggests that PCL can be used as a scaffold to generate nervous tissue in vitro. PLC has excellent mechanical properties and a slow degradation rate. Moreover, on the basis of our results, we propose that PCL could be used for to make in vitro, scaffold coated with neuronal cells derived from Adipose stem cells (ADSC). Neuronal cells-coated PCL could find several applications to replace damaged area of the body; for example, a possible use could be the generation of nerves

    Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells

    No full text
    Butyric acid (BA) has been reported to induce anticancer effects on hepatocellular carcinoma (HCC) cells both in vitro and in vivo. However, its delivery and release in cancer tissues must be optimized. On the basis of these requirements, we prepared liposomes coated with chitosan and uncoated liposomes and both types were loaded with BA through a thin-film hydration method. The liposomes coated or uncoated with chitosan had a mean hydrodynamic size of 83.5 and 110.3 nm, respectively, with a homogeneous size distribution of the particles. For evaluation of the biological effects of the nanoformulations, the hepatoblastoma (HB) HepG2 cell line was utilized. BA-loaded liposomes coated with chitosan showed a considerable higher cytotoxicity than both uncoated liposomes and free BA, with IC50 values, after 72 h of incubation, of 7.5, 2.5 and 1.6 mM, respectively. Treatment of HepG2 cells for 5 h with the BA-loaded liposomes coated with chitosan at 5 mM lowered the extent of the increase in IL-8, IL-6, TNF-α and TGF-β expression of approximately 64, 58, 85 and 73.8%, respectively, when compared to the untreated cells. The BA-loaded liposomes coated with chitosan had marked capacity to be internalized in human HB cells showing an increased cytotoxic activity when compared with free BA and important anti-inflammatory effects by inhibiting production of cytokines with a central role in liver cell survival
    corecore