10 research outputs found

    Non-destructive characterization techniques for battery performance and lifecycle assessment

    Full text link
    As global energy demands escalate, and the use of non-renewable resources become untenable, renewable resources and electric vehicles require far better batteries to stabilize the new energy landscape. To maximize battery performance and lifetime, understanding and monitoring the fundamental mechanisms that govern their operation throughout their life cycle is crucial. Unfortunately, from the moment batteries are sealed until their end-of-life, they remain a black box, and our current knowledge of a commercial battery s health status is limited to current (I), voltage (V), temperature (T), and impedance (R) measurements, at the cell or even module level during use. Electrochemical models work best when the battery is new, and as state reckoning drifts leading to an over-reliance on insufficient data to establish conservative safety margins resulting in the systematic under-utilization of cells and batteries. While the field of operando characterization is not new, the emergence of techniques capable of tracking commercial battery properties under realistic conditions has unlocked a trove of chemical, thermal, and mechanical data that has the potential to revolutionize the development and utilization strategies of both new and used lithium-ion devices. In this review, we examine the latest advances in non-destructive operando characterization techniques, including electrical sensors, optical fibers, acoustic transducers, X-ray-based imaging and thermal imaging (IR camera or calorimetry), and their potential to improve our comprehension of degradation mechanisms, reduce time and cost, and enhance battery performance throughout its life cycle

    Quantitatively Designing Porous Copper Current Collectors for Lithium Metal Anodes

    No full text
    International audienceLithium metal has been an attractive candidate as a next-generation anode material. Despite its popularity, stability issues of lithium in the liquid electrolyte and the formation of lithium whiskers have kept it from practical use. Three-dimensional (3D) current collectors have been proposed as an effective method to mitigate whisker growth. Although extensive research has been done, the effects of three key parameters of the 3D current collectors, namely, the surface area, the tortuosity factor, and the surface chemistry, on the performance of lithium metal batteries remain elusive. Herein, we quantitatively studied the role of these three parameters by synthesizing four types of porous copper networks with different sizes of well-structured microchannels. X-ray microscale computed tomography (micro-CT) allowed us to assess the surface area, the pore size, and the tortuosity factor of the porous copper materials. A metallic Zn coating was also applied to study the influence of surface chemistry on the performance of the 3D current collectors. The effects of these parameters on the performance were studied in detail through scanning electron microscopy (SEM) and titration gas chromatography (TGC). Stochastic simulations further allowed us to interpret the role of the tortuosity factor in lithiation. The optimal range of the key parameters is thereby found for the porous coppers and their performance is predicted. Using these parameters to inform the design of porous copper anodes for Li deposition, Coulombic efficiencies (CEs) of up to 99.63% are achieved, thus paving the way for the design of effective 3D current collector systems

    Carbon Free High Loading Silicon Anodes Enabled by Sulfide Solid Electrolytes for Robust All Solid-State Batteries

    No full text
    The development of silicon anodes to replace conventional graphite in efforts to increase energy densities of lithium-ion batteries has been largely impeded by poor interfacial stability against liquid electrolytes. Here, stable operation of 99.9 weight% micro-Si (uSi) anode is enabled by utilizing the interface passivating properties of sulfide based solid-electrolytes. Bulk to surface characterization, as well as quantification of interfacial components showed that such an approach eliminates continuous interfacial growth and irreversible lithium losses. In uSi || layered-oxide full cells, high current densities at room temperature (5 mA cm 2), wide operating temperature (-20{\deg}C to 80{\deg}C) and high loadings (>11 mAh cm-2) were demonstrated for both charge and discharge operations. The promising battery performance can be attributed to both the desirable interfacial property between uSi and sulfide electrolytes, as well as the unique chemo-mechanical behavior of the Li-Si alloys
    corecore