12,835 research outputs found
k-Trails: Recognition, Complexity, and Approximations
The notion of degree-constrained spanning hierarchies, also called k-trails,
was recently introduced in the context of network routing problems. They
describe graphs that are homomorphic images of connected graphs of degree at
most k. First results highlight several interesting advantages of k-trails
compared to previous routing approaches. However, so far, only little is known
regarding computational aspects of k-trails.
In this work we aim to fill this gap by presenting how k-trails can be
analyzed using techniques from algorithmic matroid theory. Exploiting this
connection, we resolve several open questions about k-trails. In particular, we
show that one can recognize efficiently whether a graph is a k-trail.
Furthermore, we show that deciding whether a graph contains a k-trail is
NP-complete; however, every graph that contains a k-trail is a (k+1)-trail.
Moreover, further leveraging the connection to matroids, we consider the
problem of finding a minimum weight k-trail contained in a graph G. We show
that one can efficiently find a (2k-1)-trail contained in G whose weight is no
more than the cheapest k-trail contained in G, even when allowing negative
weights.
The above results settle several open questions raised by Molnar, Newman, and
Sebo
Improved Approximation Algorithms for Stochastic Matching
In this paper we consider the Stochastic Matching problem, which is motivated
by applications in kidney exchange and online dating. We are given an
undirected graph in which every edge is assigned a probability of existence and
a positive profit, and each node is assigned a positive integer called timeout.
We know whether an edge exists or not only after probing it. On this random
graph we are executing a process, which one-by-one probes the edges and
gradually constructs a matching. The process is constrained in two ways: once
an edge is taken it cannot be removed from the matching, and the timeout of
node upper-bounds the number of edges incident to that can be probed.
The goal is to maximize the expected profit of the constructed matching.
For this problem Bansal et al. (Algorithmica 2012) provided a
-approximation algorithm for bipartite graphs, and a -approximation for
general graphs. In this work we improve the approximation factors to
and , respectively.
We also consider an online version of the bipartite case, where one side of
the partition arrives node by node, and each time a node arrives we have to
decide which edges incident to we want to probe, and in which order. Here
we present a -approximation, improving on the -approximation of
Bansal et al.
The main technical ingredient in our result is a novel way of probing edges
according to a random but non-uniform permutation. Patching this method with an
algorithm that works best for large probability edges (plus some additional
ideas) leads to our improved approximation factors
The Complexity of Scheduling for p-norms of Flow and Stretch
We consider computing optimal k-norm preemptive schedules of jobs that arrive
over time. In particular, we show that computing the optimal k-norm of flow
schedule, is strongly NP-hard for k in (0, 1) and integers k in (1, infinity).
Further we show that computing the optimal k-norm of stretch schedule, is
strongly NP-hard for k in (0, 1) and integers k in (1, infinity).Comment: Conference version accepted to IPCO 201
Matroid Online Bipartite Matching and Vertex Cover
The Adwords and Online Bipartite Matching problems have enjoyed a renewed
attention over the past decade due to their connection to Internet advertising.
Our community has contributed, among other things, new models (notably
stochastic) and extensions to the classical formulations to address the issues
that arise from practical needs. In this paper, we propose a new generalization
based on matroids and show that many of the previous results extend to this
more general setting. Because of the rich structures and expressive power of
matroids, our new setting is potentially of interest both in theory and in
practice.
In the classical version of the problem, the offline side of a bipartite
graph is known initially while vertices from the online side arrive one at a
time along with their incident edges. The objective is to maintain a decent
approximate matching from which no edge can be removed. Our generalization,
called Matroid Online Bipartite Matching, additionally requires that the set of
matched offline vertices be independent in a given matroid. In particular, the
case of partition matroids corresponds to the natural scenario where each
advertiser manages multiple ads with a fixed total budget.
Our algorithms attain the same performance as the classical version of the
problems considered, which are often provably the best possible. We present
-competitive algorithms for Matroid Online Bipartite Matching under the
small bid assumption, as well as a -competitive algorithm for Matroid
Online Bipartite Matching in the random arrival model. A key technical
ingredient of our results is a carefully designed primal-dual waterfilling
procedure that accommodates for matroid constraints. This is inspired by the
extension of our recent charging scheme for Online Bipartite Vertex Cover.Comment: 19 pages, to appear in EC'1
New developments in iterated rounding
Iterated rounding is a relatively recent technique in algorithm design, that despite its simplicity has led to several remarkable new results and also simpler proofs of many previous results. We will briefly survey some applications of the method, including some recent developments and giving a high level overview of the ideas
Local Guarantees in Graph Cuts and Clustering
Correlation Clustering is an elegant model that captures fundamental graph
cut problems such as Min Cut, Multiway Cut, and Multicut, extensively
studied in combinatorial optimization. Here, we are given a graph with edges
labeled or and the goal is to produce a clustering that agrees with the
labels as much as possible: edges within clusters and edges across
clusters. The classical approach towards Correlation Clustering (and other
graph cut problems) is to optimize a global objective. We depart from this and
study local objectives: minimizing the maximum number of disagreements for
edges incident on a single node, and the analogous max min agreements
objective. This naturally gives rise to a family of basic min-max graph cut
problems. A prototypical representative is Min Max Cut: find an cut
minimizing the largest number of cut edges incident on any node. We present the
following results: an -approximation for the problem of
minimizing the maximum total weight of disagreement edges incident on any node
(thus providing the first known approximation for the above family of min-max
graph cut problems), a remarkably simple -approximation for minimizing
local disagreements in complete graphs (improving upon the previous best known
approximation of ), and a -approximation for
maximizing the minimum total weight of agreement edges incident on any node,
hence improving upon the -approximation that follows from
the study of approximate pure Nash equilibria in cut and party affiliation
games
On the number of matroids
We consider the problem of determining , the number of matroids on
elements. The best known lower bound on is due to Knuth (1974) who showed
that is at least . On the other hand, Piff
(1973) showed that , and it has
been conjectured since that the right answer is perhaps closer to Knuth's
bound.
We show that this is indeed the case, and prove an upper bound on that is within an additive term of Knuth's lower bound. Our proof
is based on using some structural properties of non-bases in a matroid together
with some properties of independent sets in the Johnson graph to give a
compressed representation of matroids.Comment: Final version, 17 page
An entropy argument for counting matroids
We show how a direct application of Shearers' Lemma gives an almost optimum
bound on the number of matroids on elements.Comment: Short note, 4 page
Sequential item pricing for unlimited supply
We investigate the extent to which price updates can increase the revenue of
a seller with little prior information on demand. We study prior-free revenue
maximization for a seller with unlimited supply of n item types facing m myopic
buyers present for k < log n days. For the static (k = 1) case, Balcan et al.
[2] show that one random item price (the same on each item) yields revenue
within a \Theta(log m + log n) factor of optimum and this factor is tight. We
define the hereditary maximizers property of buyer valuations (satisfied by any
multi-unit or gross substitutes valuation) that is sufficient for a significant
improvement of the approximation factor in the dynamic (k > 1) setting. Our
main result is a non-increasing, randomized, schedule of k equal item prices
with expected revenue within a O((log m + log n) / k) factor of optimum for
private valuations with hereditary maximizers. This factor is almost tight: we
show that any pricing scheme over k days has a revenue approximation factor of
at least (log m + log n) / (3k). We obtain analogous matching lower and upper
bounds of \Theta((log n) / k) if all valuations have the same maximum. We
expect our upper bound technique to be of broader interest; for example, it can
significantly improve the result of Akhlaghpour et al. [1]. We also initiate
the study of revenue maximization given allocative externalities (i.e.
influences) between buyers with combinatorial valuations. We provide a rather
general model of positive influence of others' ownership of items on a buyer's
valuation. For affine, submodular externalities and valuations with hereditary
maximizers we present an influence-and-exploit (Hartline et al. [13]) marketing
strategy based on our algorithm for private valuations. This strategy preserves
our approximation factor, despite an affine increase (due to externalities) in
the optimum revenue.Comment: 18 pages, 1 figur
On a generalization of iterated and randomized rounding
We give a general method for rounding linear programs that combines the commonly used iterated rounding and randomized rounding techniques. In particular, we show that whenever iterated rounding can be applied to a problem with some slack, there is a randomized procedure that returns an integral solution that satisfies the guarantees of iterated rounding and also has concentration properties. We use this to give new results for several classic problems such as rounding column-sparse LPs, makespan minimization on unrelated machines, degree-bounded spanning trees and multi-budgeted matchings
- …