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Abstract. A common challenge faced by sellers is to explore and exploit,
in limited time, buyers’ willingness to pay. We propose distribution-free
revenue maximization techniques for a seller with unlimited supply of n

item types facing m myopic buyers present for k < n days.
We highlight the power of linear uniform prices (i.e. equal item prices)
for buyer valuations with hereditary maximizers (HM), e.g. multi-unit or
gross substitutes valuations. In particular, we present a non-increasing,
randomized, schedule of k linear uniform prices with expected revenue
within a logk(mn) factor of optimal given HM valuations. Our result
improves by a log k factor [2]’s approximation for general valuations and
one-shot prices, and does not go through even for submodular valuations.
We also consider influences (in the form of allocative externalities) be-
tween buyers with HM valuations. We provide a rather general model of
positive influence of other buyers’ ownership of some items on a buyer’s
valuation. For affine, submodular externalities, we present an influence-
and-exploit [8] marketing strategy based on our algorithm for private HM
valuations. This strategy preserves our logk(mn) approximation factor,
despite an affine increase (due to externalities) in the optimum revenue.

1 Introduction

Consider a seller sequentially offering items for sale to myopic buyers, i.e. buyers
that do not take into account possible future price reductions. At first glance,
the seller appears to be able to obtain good revenue by simply setting high prices
initially and then lowering them. That is however not always the case, due to
complementarities among items, as illustrated in the following example.

Consider three movies in digital format (e.g. DVD, Blu-Ray, or available for
download): a very good science-fiction one and an animation movie and a drama,
both of slightly lower quality. A typical family prefers the science-fiction one to
any of the other two, but the animation and drama (for variety) over any other
pair. The family does not strategize about price schedules. If a greedy movie
retailer starts with high prices and reduces them afterwards (on all movies)
then, despite good revenue on the science-fiction movie, it loses the opportunity
of more revenue by selling the other two instead.

Inspired by similar optimization problems faced by sellers in other domains,
we study revenue maximization problems via dynamic pricing over k days for
a seller with n item types and with very low marginal cost (typically termed
“unlimited supply” in the literature [2, 6]) for an additional copy of any item.

We assume that the m buyers (present throughout the k days) are myopic:
that is, each buyer chooses her preferred (i.e. utility-maximizing) bundle in each



day without reasoning about future price reductions. In modeling such buyers’
dynamic preferences, we use a simple, cumulative, assumption on their additional
value for a set of items given the items they already own. To ensure consistency
among preferred bundles in consecutive days1, we assume that buyers’ private
valuations have hereditary maximizers (HM), a new class of valuations that
we introduce. In particular, multi-unit (not necessarily concave) valuations and
gross substitutes valuations (a classical model in economics, see e.g. [4, 7]) have
hereditary maximizers. While the HM property for gross substitutes was already
established in [3], we provide a simpler proof based on a fundamental graph-
theoretic fact. Our example fails the HM consistency property, since the science-
fiction movie is preferred to each of the other two, but the pair of the other two
is preferred to either pair containing the science-fiction movie.

We provide competitive algorithms that price all items equally (i.e. that
use linear uniform prices). This model involves the least price discrimination
possible under sequential pricing: no buyer or item is favored over another. In
fact, some online movie retailers (e.g. iTunes) have very limited variability in
prices – iTunes offers only two prices, with the lower one for older movies. A
O(log mn) approximation to the optimal revenue is known [2] for such prices if all
buyers (with any valuations) are impatient (i.e. k = 1). Our main contribution is
an algorithm with an improved approximation ratio O( log mn

log k ) for general k < n.
In the second part of the paper, we allow a buyer’s valuation for a set of items

to depend on the others’ ownership of copies of (possibly different) items. In eco-
nomic language, others exert an allocative2 externality on a buyer’s value. Movie
delivery services (e.g. Netflix) exploit such effects, allowing users to befriend each
other and to observe which movies they watched (and their rating).

We introduce a (distribution-free) model of externalities and extend our al-
gorithm for private valuations. Our model departs from existing [1, 8] revenue
maximization problems in the presence of externalities in two aspects, that, in
our view, allow for more generality. First, there is more than one item type for
sale, which requires a new language for expressing externalities. We introduce
such a language that extends [1, 8]; it allows a buyer to express a positive, affine
influence by others that is monotone and submodular in their bundles. Second,
we assume only certain properties of the valuation functions, as opposed to val-
ues drawn from a (known) distribution. We obtain an algorithm with the same
approximation ratio as without externalities, despite an affine increase in the
optimum. Our algorithm is an influence-and-exploit (IE) strategy, introduced
by Hartline et al. [8]. In an IE strategy, a set S of buyers is given some items for
free and then other customers are charged a price that exploits other owners’ (a
superset of S) influence on the items’ value.

Related work Balcan et al. [2] present structural results for one-shot pricing
and demand with arbitrary valuations and unlimited supply. They show that an

1 Private valuations, as opposed to preferred bundles, cannot change between days.
2 As opposed to informational or financial externalities [9], where a valuation depends

on others’ information (e.g. signals of the quality of the item) or on their payments.



exponentially scaled random price has revenue that approximates in expectation
the optimum social welfare to a logarithmic factor (in the number of items).

Fiat and Wingarten [6] show that revenue-maximizing envy-free prices can
be found in polynomial time for single-minded buyers and unlimited supply.

Jehiel and Moldovanu [9] find that many classical results no longer hold when
externalities (allocative or informational) are present in auctions.

While externalities are a natural and well-studied phenomenon in social net-
works [10], the corresponding revenue maximization problem is introduced by
Hartline et al. [8], who investigate the approximation properties of single-item
distribution-based influence-and-exploit marketing strategies. Akhlaghpour et
al. [1] present approximation and inapproximability results for the same problem,
but additionally precluding the seller from using price discrimination amongst
buyers. In fact, our algorithm builds upon a scheme in [1].

Paper structure. We introduce notation and review static pricing results in
Sec. 2, defining a dynamic model in Sec. 2.1. In Sec. 3 we impose a restriction on
valuations permitting good sequential revenue, fact established in Sec. 4. Finally,
in Sec. 5, we model externalities, where a buyer’s valuation depends on items
owned by others, and extend the Sec. 4 revenue approximation.

2 Preliminaries

We consider m customers (present for k days) with quasilinear utilities buy-
ing bundles of n item types. We start with a generic customer with arbitrary
valuation (the same in any day) v :21..n→R. We denote valuation maxima by H.
We only use the simplest form of pricing, with no item or buyer discrimination.

Definition 1 A price vector p ∈ R
n is linear uniform3 if pj = p, ∀ j = 1..n.

Given a price vector, a customer buys a preferred (utility-maximizing) bundle.

Definition 2 For price vector p ∈ R
n, the demand correspondence [7] Dv(p)

of valuation v is the set of utility-maximizing bundles at prices p:

Dv(p) = argmaxS⊆1..n{v(S) −
∑

j∈S pj} (1)

For linear uniform price p=p · 1, let Dv(p)=Dv(p) and Fv(p)=minS∈D(p·1)|S|
be the least number of items in a bundle demanded (by valuation4 v) at prices p.

For any valuation, a higher price cannot increase the least quantity bought.

Lemma 1(Balcan et al. [2]) For arbitrary valuation v and p > p′, F (p) ≤ F (p′).

v’s demand curve is a step function given by (pl, F (pl))l=0..nv+1 (with nv≤n)
where threshold prices 0 = p0 <p1 <..<pnv ≤pnv+1 =H satisfy F (pl) = F (p) >
F (pl+1), ∀ p ∈ [pl, pl+1), ∀ l = 0..nv. The area AF under the demand curve is
∑nv

l=1 pl(F (pl) − F (pl+1)).

3 Different (non-uniform) item prices are also (e.g. [4]) called linear prices.
4 Except for Sec. 5, v will be clear from context and omitted from D and F .



Lemma 2 [2] AF = H = maxS⊆1..n v(S), i.e. v’s maximum willingness to pay.

Our goal is revenue maximization via (possibly randomized) price sequences
decided ahead of time (but only revealed gradually to buyers).

Definition 3 A pricing scheme P is a sequence of k′ ≤ k prices p′1≥ . . .≥p′k′ .

The part of AF covered by P is
∑k′

l=1 p′l(F (p′l) − F (p′l−1)) where F (p′0) = 0.
RevP(v1, . . . , vm) denotes P’s revenue (in expectation if P is randomized), given
valuations v1, . . . , vm and the least favorable tie-breaking decisions by buyers.

For instance, prices r1 >r2 cover a F (r1)r1+(F (r2)−F (r1))r2 part of AF , i.e.
the area of the union of two rectangles with opposite corners (0, 0) and (ri, F (ri)).

A standard [2, 8] revenue benchmark is customers’ total willingness to pay.

Definition 4 A (possibly randomized) pricing scheme P is a c-revenue approx-
imation (c ≥ 1) if c · E[RevP(v1, . . . , vm)] ≥

∑

i∈1..m maxS⊆1..n vi(S) for all
valuations v1 . . . vm, where the expectation is taken over P’s random choices.

We will typically use prices of the form

ql = H/2l−1 for l ≥ 1

(ql, F (ql))l=1..1+log H comprise the q-demand curve: F (ql+1)≥F (p)=F (ql), ∀p∈
(ql+1, ql). In contrast to the p-demand curve, F (ql) is weakly increasing in l.
Static (k=1) scheme Random

H
D selects price ql =H/2l−1 with l uniform in 1..D.

Lemma 3 [2] For H = max
i∈1..m,S⊆1..n

vi(S), Random
H
log(2mn)is a5 4 log(mn)-revenue

approximation.

For m=1, Lemma 3 follows from

H ≤ 4
∑log(2n)

l=1 qlF (ql) = 4
∑log(2n)

l=1 (ql−1 − ql)F (ql) Eq. (1) in [2]

Given k days, we improve (Sec. 4) Lemma 3’s Ω(log mn) factor by a log k factor.

2.1 Sequential pricing

We define customer behavior when present for more than one day. We assume
the seller offers linear uniform prices rd∈R+ in day d=1..k, with r1 >. . .> rk.

Assume that before day d the customer buys (disjoint) sets S1, . . . , Sd−1. We
model the customer as forward-myopic, i.e. for S ⊆ 1..n\(S1 ∪ · · · ∪ Sd−1),

ud,...,1(S1. . .Sd−1, S, r1 . . . rd) = v(S1 ∪. . .∪ Sd−1∪S)−(
∑d−1

l=1 rl|Sl|)−rd|S| (2)

i.e. a customer does not anticipate price drops but does take into account past
purchases (accumulating items) and payments to decide a utility-maximizing
bundle to buy today. In this model, a customer buys nothing in a day where the
price increases, hence our focus on decreasing price sequences: the seller starts
with a high price and then gradually reveals discounts, a common retail practice.

5 Unless otherwise specified, all logarithms in this paper are base 2.



The maximum utility after day d cannot be negative (easily shown by in-
duction on d), since the customer always has the option of not buying anything.
Thus, any sequence of prices defines an individually rational mechanism.

Denote the collection of preferred bundles outside S1 ∪ · · · ∪Sd−1 at rd ·1 by

DS1,...,Sd−1
v (r1 . . . rd) = argmax

S⊆1..n\(S1∪···∪Sd−1)

ud,...,1(S1, . . . , Sd−1, S, r1 . . . rd)

We now provide a submodular valuation consistent with the example in the
introduction and find that the revenue from a high, followed by a low, price may
be lower than that of the best single price. We also see that while the revenue
from a single price p amounts to at least the part of AF covered by p, in general
one cannot obtain an analogous statement for a price sequence.

Example 1 Let a be the science-fiction movie, and b, c be the animation and
drama. Define a valuation v by v(a) = 3, v(b) = v(c) = 2.1, v(a, b) = v(a, c) =
3.8, v(b, c)= v(a, b, c)=4.2. For r1 =1.5, D(r1)= {{a}} and for r2 =1,D(r2) =
{{b, c}}. Neither b or c is worth $1 given a: D{a}(r1, r2) = {∅}. Less revenue
($1.5) is obtained from offering r1 followed by r2 than from r2 alone ($2).

Example 1 can be extended to m different items by singling out one item and
valuing any set with at least 3 items at the highest value among its size 2 subsets.
No analogous example exists if v treats items as identical. We define a more gen-
eral valuation class (containing gross substitutes) with good sequential revenue.

3 Valuations with hereditary maximizers

We henceforth impose on valuations a novel, sequential consistency property:
for any value-maximizing (when restricted to size j and base S0) bundle Sj , one
can add an item to Sj and obtain an analogous maximizer for size j + 1.
We introduce notation Mv

S0,j for valuation maximizers (given base S0) of size j.

Definition 5 For a valuation v, subset S0 and size j ≤ n − |S0|, let

Mv
S0,j = argmax|S|=j,S∩S0=∅ v(S ∪ S0) − v(S0)

Clearly, a size j set (if any) preferred at a linear uniform price cannot have
a lower value than another size j set.

Lemma 4 For all prices r and sizes j, D(r)∩{|S| = j} is either empty or Mv
∅,j .

Definition 6 For a bundle S0, valuation v has S0-hereditary maximizers if

∀ j, ∀Sj ∈ Mv
S0,j , ∃Sj+1 ∈ Mv

S0,j+1 with Sj ⊂ Sj+1 (HM)

implying ∀ j′ > j, ∀Sj ∈ Mv
S0,j , ∃Sj′ ∈ Mv

S0,j′ with Sj ⊂ Sj′ (HM∗)

For S0 = ∅, we simply say that v has hereditary maximizers (HM).

That is, given any size j subset Sj maximizing marginal value over S0, one
can add an element (outside S0) to Sj and obtain a size j +1 subset maximizing
marginal value over S0. We omit v from Mj when clear from context.



Lemma 5A multi-unit valuation has S0-hereditary maximizers for any set S0.

Proof. The identity of items does not matter for a multi-unit valuation v: thus
Mv

S0,j is the collection of all sets of size j outside S0, for all j and S0.

Further discussion and examples of HM valuations are deferred to sections 3.1
and C, where this class of valuations and that of gross substitutes are compared.

Except for Theorem 2, we henceforth focus on ∅-hereditary maximizers only.
We proceed with a quantity guarantee for HM valuations and linear uniform

prices: no fewer items are sold for price sequence r1, . . . , rd (regardless of which
preferred bundles are bought) than in the worst-case for rd alone, i.e. F (rd).

Theorem 1 Fix an HM valuation v, a day d ≤ k and item prices r1 > · · · > rd.
Let Sδ ∈ DS1,...,Sδ−1(r1 . . . rδ) preferred at rδ given that S1, . . . , Sδ−1 were

sequentially bought at r1, . . . , rδ−1, ∀ δ = 1..d. Then
∑d

δ=1 |Sδ| ≥ F (rd).

Proof. We treat the case d = 2; the claims for general d follow similarly.
Let S1∈D(r1) and assume |S1| < F (r2) (otherwise the claim is immediate).

Let S2 ∈ DS1(r1, r2). By Lemma 4, S1 ∈ M∅,|S1|. As F (r2) > |S1|, by (HM∗),
∃S′

2∈M∅,F (r2) with S1 ⊂ S′
2. As M∅,F (r2)∩D(r2) 6= ∅, by Lemma 4, S′

2 ∈ D(r2).
We establish a structural property: S2 ∪ S1 ∈D(r2). Informally, set S1 pre-

ferred at higher price r1 can serve as base to create sets preferred at lower price r2

alone via joining sets preferred sequentially at r2 after buying S1. S2 is preferred
at r2 given base S1⊂S′

2 and then S2 ∪ S1 must be preferred at r2 alone.
Let uS = v(S ∪S1)− r1|S1|− r2|S| be the utility from buying S ⊆ 1..n\S1 at

r2 after buying S1 at r1. Note that uS′
2\S1

−uS2 = (v(S′
2)−r2|S′

2|)−(v(S2∪S1)−

r2|S2 ∪ S1|) ≤ 0 as S2∈DS1(r1, r2). If uS′
2\S1

<uS2 then S2 ∪ S1 is preferred to

S′
2 at r2, contradicting S′

2∈D(r2). Thus uS′
2\S1

=uS2 implying S2 ∪ S1∈D(r2).

We use Theorem 1 in Sec. 4 and 5 to lower bound sequential revenue.
We obtain a much weaker statement (proof deferred to Appendix B) than

Theorem 1 for submodular valuations, dichotomy reinforced by Example 1.

Proposition 1 For a submodular valuation v, if S1 ∈ D(r1), S2 ∈ DS1(r1, r2)
and S′

2 ∈ D(r2) then S2 6⊃ S′
2\S1 (note that equality is allowed).

3.1 Gross substitutes

A valuation satisfies the gross substitutes [7] condition if raising prices on some
items does not reduce the demand on the other items. More formally,

Definition 7 A valuation v is gross substitutes (GS) if for any price vectors6

p′ ≥ p, and any A ∈ D(p) there exists A′ ∈ D(p′) with A′ ⊇ {i ∈ A : pi = p′i}

Remarkably [7], for any set of GS buyers, there exists a Walrasian (or com-
petitive) equilibrium with one-shot item (possibly non-uniform) prices, i.e. a set
of such prices at which buyers’ preferred bundles form a partition of all items.

6 We compare price vectors p, p′∈R
n component-wise: p′≥p ⇐⇒ p′

j ≥ pj ∀ j = 1..n.



Concave multi-unit demand valuations and unit demand valuations are GS.
We review a more general GS valuation class and give an HM extension in Sec. C.

Denote v’s conditioning on set S (measuring marginal value over S) by
vS(A) = v(S ∪A)− v(S), ∀A ⊆ 1..n\S. There is a more direct, valuation-based
(as opposed to price-based as in Def. 7) characterization of GS valuations.

Proposition 2 [11] v is gross substitutes if and only if v is submodular7 and

∀ items a, b, c,set S, vS(ab) + vS(c) ≤ max{vS(ac) + vS(b), vS(bc) + vS(a)} (3)

i.e. no unique maximizer among vS(ab) + vS(c), vS(ac)+ vS(b), vS(bc) + vS(a).

Theorem 2 is established8 by Bertelsen [3]. Starting, like [3], from Eq. (3),
we provide in Appendix A a simpler proof via a basic graph-theoretic fact.

Theorem 2 A GS valuation v has S0-hereditary maximizers for any bundle S0.

4 Revenue approximation for independent HM valuations

We now exploit Theorem 1’s quantity guarantees for revenue maximization.

Algorithm 1 below leads (proved in Theorem 3) to a O( log(mn)
log k )-revenue

approximation. It returns a decreasing list of q· prices whose indices lie within an
interval (initially [1, log(2mn)]) that is reduced by at least half at each iteration.
Each execution of A(l, l, ·) adds three prices (q l+l

2

, ql, q l+l
2

with l uniform in [l, l])

to the list and recurses on the four subintervals determined by them, l, and l.

Algorithm 1 A(l, l, M ′) returns a list of 4M ′

−1 prices of the form ql = H/2l−1

(with l ∈ [l, l]) in decreasing order.

if M ′ ≤ 0 or l > l then return ∅
Choose l uniformly at random between l and l

return A( l+l
2

+ 1, l, M ′−1)∪{q l+l
2

}∪A(l + 1, l+l
2

− 1, M ′−1)∪{ql}∪A(
l+l

2
+ 1, l −

1, M ′−1)∪{q l+l

2

}∪A(l,
l+l

2
− 1, M ′−1)

We obtain the main result of this section, the desired quality of approximation
of Algorithm 1’s randomized price schedule. In particular we prove, leveraging
the consistency property (Theorem 1) and Lemma 6 below, that a pricing scheme
P ’s revenue amounts to at least the part of AF covered by P . We relate the
bundles bought at each price separately and the bundles bought sequentially.

7 A GS valuation may not be monotone, i.e. may not satisfy free disposal.
8 Bertelsen provides a stronger result: for a GS valuation v, the collection of sets
Mv

S0,j for all j is a greedoid, i.e. a collection F of subsets of 1..n that is accessible
(i.e. ∀S ∈ F ,∃x ∈ S with S \{x} ∈ F) and satisfies the augmentation property
( ∀S, S′ ∈ F with |S| < |S′|, ∃x ∈ S′\S with S∪{x} ∈ F). Clearly, the maximum
of an HM valuation without ties can be found efficiently via a greedy algorithm –
Bertelsen provides such an algorithm for a GS valuation that can also handle ties.



Theorem 3 The expected revenue from offering to m forward-myopic customers
with HM valuations with maxima H1. . .Hm (denote H = maxi∈1..m Hi) the k
prices output by A(1, log(2mn), log4(k + 1)) for H is Ω( log k

log(mn) )
∑

i∈1..m Hi.

Proof. We proceed with one customer; linearity of expectation yields the claim.
Let r1 ≥ . . .≥ rk be prices output by A(1, log(2mn), log4(k+1)) for H . Let set

S′
d ∈ DS′

1,...,S′

d−1(r1 . . . rd) be bought in day d. By Theorem 1,
∑d

i=1 |S
′
i|≥F (rd).

Via Lemma 6 below with d0 = 1, d = k, qδ = rδ and xδ = F (rδ), revenue

is at least
∑d

δ=1 rδ(F (rδ) − F (rδ−1)), i.e. the area covered by Algorithm 1 with
prices r1, . . . , rd. The quality of approximation follows via Theorem 4 below. ⊓⊔

The proof structure follows that of Lemma 2.5 in [1], but with key differences:
we assume that there is more than one item for sale and that the seller has no
knowledge other than H (as opposed to distributional) of the valuation. Our
approximation holds in expectation as opposed to [1]’s deterministic bound.

Theorem 4 A(1, log(2mn), log4(k + 1)) covers an Ω( log k
log(mn) ) fraction of AF .

Proof. We will aim to cover instead the area H ′ under the q-demand curve cor-
responding to q prices of at least H/(2mn), which is, by standard facts (e.g. [2]),
at least a constant fraction of H .

Let k = 4M −1. Denote by AM ′ the area newly covered in Algorithm 1 at
iteration M ′, i.e. in all calls of A(l, l, M + 1 − M ′).

Following [1], we show by induction on M (clearly true for M = 0) that

E1..M [
∑M

M ′=1 AM ′ ] ≥ M
log mnH ′ (4)

Consider a piece P of the q-demand curve, delimited by prices q=2l and q=

2l, corresponding to a call of A(l, l, M +1−M ′). Since A recurses on subintervals
determined by midpoints, P ’s range of q-prices is bounded: q/q ≤ 2mn/2M ′

. By

a standard result (see e.g. [1], Lemma 2.4 or [2], Theorem 9) Random
q

l−l
covers,

in expectation, at least an a fraction of P ’s area, with a = log(2mn/2M ′

) =
log(mn) − (M ′−1).
Iteration M covers at least a log mn−(M−1) fraction of each piece i.e. in all

E1..M [AM ] = E1..M−1[E[AM |A1, . . . , AM−1]] ≥
E[H ′ −

∑M−1
M ′=1 AM ′ ]

log mn−(M−1)

E1..M [
∑M

M ′=1 AM ′ ] ≥ E1..M−1[H′]
log mn−(M−1) + (1 − 1

log mn−(M−1))E1..M−1[
∑M−1

M ′=1 AM ′ ]

≥ H′

log mn−(M−1) +
(

1 − 1
log mn−(M−1)

)

M−1
log mnH ′ (5)

= H′

log mn−(M−1)

(

1 + (M−1)(log mn−M)
log mn

)

= H′

log mn−(M−1)
M log mn−M(M−1)

log mn = M
log mnH ′

where Eq. (5) follows from the inductive hypothesis. ⊓⊔



Finally, we lower bound revenue given a lower bound on total quantities bought.

Lemma 6 If, at prices qd0 >. . .>qd, at least xδ items (xd ≥xd−1≥ . . .≥xd0 ≥
xd0−1 = 0) are sold in total up to each day δ = d0..d (e.g. at least xd0+1 items in

days d0 and d0 + 1 together) then the revenue is at least
∑d

δ=d0
qδ(xδ − xδ−1).

Proof. The lowest revenue is obtained when exactly xδ items are sold in day
δ = d0..d and (as prices are decreasing) when as few items as possible are sold in
early days, i.e. xδ−xδ−1 items are sold in day δ = d0..d, yielding the claim. ⊓⊔

As in [2], approximation factors can be improved to Ω( log k
log n ) instead of

Ω( log k
log mn ) if Hi = H, ∀ i ∈1..m by using A(1, log(2n), log4(k+1)).

We will henceforth allow a buyer’s valuation (for any bundle) to be influenced
by the bundles owned by others (but not by others’ respective values).

5 Positive allocative externalities

We now investigate revenue maximization in the presence of positive externali-
ties, i.e. a buyer’s valuation being increased by other buyers’ ownership of certain
items. Such influences can be subjective, e.g. resulting from peer pressure, or ob-
jective, e.g. resulting from ownership of a certain social network application.
We define a new influence model via a predicate I : 1..m→{false, true} such
that I(i0) only depends on seller’s assignment of items to buyer i0, e.g.

• I(i0) = true iff buyer i0 owns all (or, instead, at least two) items
• I(i0) = true iff buyer i0 owns his preferred bundle at current prices

Let Id be the buyers i0 satisfying I(i0) before day d. I is monotone if Id ⊆ Id+1.
We model the valuation in day d of a buyer i as a linear mapping (depending

on d only through its argument Id\{i}) of i’s base value

vd
i (S|1..m\{i}) = (ai(Id\{i})vi(S)) ⊕ bi(Id\{i}), ∀ set S ⊆ 1..n (6)

where αvi(S) ⊕ β = {αvi(S) ifS =∅ and αvi(S) + β ifS 6=∅} for α, β ∈ R.
Thus, ai(I) and bi(I) measure the multiplicative and additive influences that

a buyer set I (satisfying I) have on buyer i. Say i’s value for any DVD of a TV
series doubles as soon as one other friend (in a set Fi) has the entire series (the
predicate I) and is then constant. Then ai(I) = 2 ⇐⇒ |I∩Fi| ≥ 1 and bi(I) = 0.

Without any influence, a valuation reduces to the base value: ai(∅) = 1, bi(∅) =
0. Assume ai and bi are non-negative, monotone and submodular9. Also assume
that ai, bi, vi are bounded: maxI⊆1..m\{i} ai(I) = ai(1..m\{i}) = Ha, maxI bi(I) =

bi(1..m\{i}) = Hb, maxS⊆1..n vi(S) = Hi with maxi∈1..m Hi = H .
Our influence model is a distribution-free extension of single-item models [1,

8]. It does not require or preclude symmetry, anonymity or a neighbor graph.

9 Submodularity (non-increasing marginal influence) is a common assumption on ex-
ternalities [1, 8]. Positive, monotone externalities are an instance of “herd mentality”.



For ai = 1, bi = 0 we recover the model before this section. Buyers are still
forward-myopic and do not strategize about which items to buy today so that
other buyers’ values increase, thus increasing their own value etc.

The additive increase is excluded in Eq. (6) for S=∅ for two reasons.First, the
intuitive requirement vd

i (∅|·)=0. Second, if bi is much larger than ai maxS vi(S)
then a multiplicative revenue approximation guarantee is impossible: prices close
to bi are needed, rendering ∅ the preferred set, i.e. zero revenue.

With positive externalities, a natural revenue maximization approach [8] is to
provide certain items for free to some buyers and then charge others accordingly.

Definition 8 The influence-and-exploit IEk marketing strategy for k ≥ 2 satis-
fies I (at no cost) for each buyer with probability 0.5, in day 1. Let A1 be the set
of buyers chosen in day 1: E[|A1|] = 0.5m. Independently of A1, a price schedule

r1 > r2 > · · · > rk−1 is constructed in A(1, log(2mn), log4(k+1)) for H + Hb/3
Ha/3 .

Each buyer i 6∈ A1 is offered uniform item price Ha/3 · rd−1 in day d ≥ 2.
Let ϕd

a(i) = ai(Id\{i}), ϕd
b(i) = bi(Id\{i}) be random variables for the influence

on buyer i ∈ 1..m\A1 just before day d ∈ 1..k in IEk. Thus ϕ1
a(i) = 1, ϕ1

b(i) = 0.

This section’s main result (proved at its end), is that Theorem 3’s approximation
factor carries over to externalities, despite the affine increase in the optimum.

Theorem 5The IEk strategy obtains an O( log mn
log k )-revenue approximation to the

optimal marketing strategy for a monotone I over IEk and HM base valuations.

The price schedule r1 > . . . > rk−1 offers (by Theorem 3) a log mn
log k -revenue

approximation given buyers’ base valuations (translated by Hb/3
Ha/3 ). We establish

that the influence of other buyers (an affine mapping of a buyer’s value in each
day) does not result in fewer items being bought in the worst-case.

By Lemma 2.1 in [8] (see Appendix D), as ai, bi are submodular and mono-
tone and I is monotone, the expected influence on a buyer i after the day 1
give-away in IEk is at least half the maximum influence.

Lemma 7 ∀ i ∈ 1..m, E[ϕ2
a(i)] ≥ 0.5Ha and E[ϕ2

b(i)] ≥ 0.5Hb.

We use this bound on the expected influence experienced by any buyer to
lower bound the probability of being significantly influenced

Lemma 8 P[ϕ2
a(i) ≥ Ha/3] ≥ 1

4 and P[ϕ2
b(i) ≥ Hb/3] ≥ 1

4 .

Proof. We only provide the proof for ϕ2
a(i) – the one for ϕ2

b(i) is similar.
Let x = P[ϕ2

a(i) ≥ Ha/3]. We have E[ϕ2
a(i)] ≤ xHa + (1 − x)Ha/3.

The claim follows via simple algebra from E[ϕ2
a(i)] ≥ Ha

2 (Lemma 7).

As utilities are quasilinear, the lowest quantity bought can only decrease if
the price is scaled by α ≥ 1, but stays constant if the valuation is also scaled.

Lemma 9 For α≥1, Dαv(p)=Dv(
p
α ) and Fv(p) ≤ Fαv⊕x(p), ∀x≥0.



We defer the proof of the inequalities concerning F (p) to Appendix D.
Lemma 10 below parallels Theorem 1, offering a guarantee on the least num-

ber of items bought by a buyer outside A1 from day 2 up to a given day d.

Lemma 10 Fix buyer i ∈ 1..m with ϕ2
a(i) ≥ Ha/3, ϕ2

b(i) ≥ Hb/3. Consider a
price schedule r1 > . . . > rk−1 as in Def. 8 and fix day d ∈ 2..k. Assume that I
is monotone and each buyer’s base valuation has hereditary maximizers.

Let set Sd ∈ D
S2,...,Sd−1

ϕd
a(i)vi⊕ϕd

b(i)
(Ha/3 · r1..d−1) be preferred in day d in IEk given

(influenced) valuation ϕd
a(i)vi⊕ϕd

b (i) and previously bought bundles S2,. . . ,Sd−1:

Sd∈ argmax
S∩

Sd−1
δ=2 Sδ=∅

{

ϕd
a(i)vi(S ∪

d−1
⋃

δ=2

Sδ)⊕ϕd
b(i) − Ha/3 · rd−1|S| −

d−1
∑

δ=2

Ha/3 · rδ−1|Sδ|

}

Then
∑d

δ=2 |Sδ| ≥ F
vi⊕

Hb/3
Ha/3

(rd−1).

Proof. Assume wlog that the customer makes the first purchase in day 2 : S2 6= ∅.

By Lemma 9 (α =
ϕ2

a(i)
Ha/3 ≥ 1 and x=

ϕ2
b(i)

Ha/3 ), S2∈D
ϕ2

a(i)vi⊕ϕ2
b(i)

(

Ha/3 · r1
)

=

D
ϕ2

a(i)

Ha/3
vi⊕

ϕ2
b
(i)

Ha/3

(

r1
)

and |S2|≥ F
vi⊕

ϕ2
b
(i)

Ha/3

(r1)≥F
vi⊕

Hb/3
Ha/3

(r1). Lemma 9 (x=
ϕ2

b(i)−Hb/3
Ha/3 )

implies the second inequality (holding with equality unless F
vi⊕

Hb/3
Ha/3

(r1) = 0).

In day d > 2,
⋃d−1

δ=2 Sδ 6= ∅; thus ϕd
b (i) is added to ϕd

a(i)vi(S ∪
⋃d−1

δ=2 Sδ) in

the argmax. We get Sd ∈ D
S2,...,Sd−1

vi⊕
ϕd

b
(i)

ϕd
a(i)

(

Ha/3
ϕd

a(i)
r1, . . . , Ha/3

ϕd
a(i)

rd−2, Ha/3
ϕd

a(i)
rd−1

)

which

equals D
S2,...,Sd−1

vi⊕
Hb/3
Ha/3

(

Ha/3
ϕ2

a(i)r
1, . . . , Ha/3

ϕd−1
a (i)

rd−2, Ha/3
ϕd

a(i)
rd−1

)

since the current preferred

set (see Eq. (2)) is invariant to additions of scalars and to modifications of earlier

prices (but not to current price, i.e. Ha/3
ϕd

a(i)r
d−1) given at least one earlier purchase.

Clearly, since vi has hereditary maximizers, so does vi ⊕ x. Theorem 1 for

prices Ha/3
ϕ2

a(i)r
1, . . . , Ha/3

ϕd−1
a (i)

rd−2, Ha/3
ϕd

a(i)
rd−1 yields

∑d
δ=2 |Sδ|≥F

vi⊕
Hb/3
Ha/3

(Ha/3
ϕd

a(i)
rd−1).

As I, ai and bi are monotone, ϕd
a(i)≥ϕ2

a(i)≥Ha/3.

By Lemma 9 for α =
ϕd

a(i)
Ha/3 ≥ 1, F

vi⊕
Hb/3
Ha/3

(Ha/3
ϕd

a(i)
rd−1) ≥ F

vi⊕
Hb/3
Ha/3

(rd−1).

Finally, we prove Theorem 5, i.e. IEk’s O( log mn
log k )-revenue approximation

Proof. By Lemma 8, ϕ2
a(i) ≥ Ha/3 for a constant fraction of buyers outside A1.

By Lemma 10, for any day d = 2..k, each such buyer i ∈ 1..m\A1 buys at least
F

vi⊕
Hb/3
Ha/3

(rd−1) items in total in days 2..d at prices Ha/3 · r1, .., Ha/3 · rd−1.

For qδ = Ha/3 · rδ−1 and xδ = F
vi⊕

Hb/3
Ha/3

(rδ−1) for δ = 2..k in Lemma 6 we

get that buyer i pays at least
∑k

δ=2 Ha/3 · rδ−1(F
vi⊕

Hb/3
Ha/3

(rδ) − F
vi⊕

Hb/3
Ha/3

(rδ−1)) ≥ Ha/3 · Ω( log k
log mn )(Hi + Hb/3

Ha/3 )

by Theorem 3. The approximation ratio follows after noting that the optimal
marketing strategy can yield revenue at most

∑

i∈1..m(HiH
a + Hb).



6 Conclusions and future directions

We have studied revenue maximization with equal item prices. We have pre-
sented a sequential pricing scheme that improves the revenue approximation
factor of an existing one-shot pricing scheme. We have also considered a setting
with positive, non-anonymous, allocative externalities and presented a simple
marketing strategy preserving the approximation factor without externalities,
despite an increase in revenue available due to influences among buyers. Several
open directions look promising to us.

Hereditary maximizers guarantees consistency of bundles bought sequen-
tially. We deem it of interest to find a less restrictive assumption, related to
sequential revenue instead, that still allows revenue approximation guarantees.

Within a day, buyers have no profitable manipulations since prices are uni-
form. An appealing additional consideration is that of the incentive properties of
our scheme for buyers whose value for an acquired item changes between days.

The widespread presence of externalities in applications leaves many exciting
open questions, both practical and theoretical, notably in multiple-item settings.
Acknowledgments. We thank Avrim Blum for detailed comments on an earlier
draft of this paper, Mark Braverman and Yuanchuan Lien for helpful discussions
and Daniel Lehmann for providing us with a copy of [3].
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A Alternate proof of Theorem 2

Proof. We fix base bundle S0 and drop it from Mj for notational simplicity.
Suppose towards a contradiction that for some Sj ∈ Mj no Sj+1 ∈ Mj+1

contains it and choose Sj+1 with lowest |Sj\Sj+1| + |Sj+1\Sj|.

Let vB
∩
(S) = v(Sj∩Sj+1)∪B(S) (simply v

∩
if B = ∅).

Assume that

maxx∈Sj\Sj+1
v
∩
({x}) ≥ maxx∈Sj+1\Sj

v
∩
({x}) (7)

and let c1 ∈ argmaxx∈Sj\Sj+1
v
∩
({x}).

We prove inductively that for any L distinct items a1...aL ∈ Sj+1\Sj,

∃l ∈ 1..L with v
∩
(a1, . . . , aL) ≤ v

∩
(a−l, c1) (8)

where a−l denotes a1...al−1al+1...aL. The theorem follows for L21 = |Sj+1\Sj |:
v
∩
(S) is maximized by Sj+1\Sj among sets of size L21. By Eq. (8), (Sj+1\{al})∪

{c1} ∈ Mj+1 and has strictly fewer elements in the symmetric difference with
Sj than Sj+1, contradicting the choice of sets Sj and Sj+1.

As a base case L = 1, Eq. (8) holds by choice of c1 as l = 1.

Assume that Eq. (8) holds for L − 1, and suppose it fails for L ≥ 2.

We define a directed bipartite graph GL−1,c1L−2 with vertices a−l for l = 1..L
in one partition (that we call PL−1) and c1a

−h,l for 1 ≤ l < h ≤ L in the other
partition (that we call Pc1L−2). Directed edge a → b in GL−1,c1L−2 represents
v
∩
(a) ≤ v

∩
(b), with strict inequality if a ∈ Pc1L−2 and b ∈ PL−1.

We show that in GL−1,c1L−2 each vertex has at least one outgoing edge, i.e.
there exists a cycle of inequalities (at least half of them strict), contradiction.
This claim holds for vertices in PL−1 by the inductive hypothesis.

Fix 1 ≤ h < l ≤ L and c1a
−h,l. The failure of Eq. (8) for L requires

v
∩
(a1, ..., aL)>max{v

∩
(a−l, c1), v∩

(a−h, c1)} i.e. (9)

va−h,l

∩
(ah, al)>max{va−h,l

∩
(ah, c1), v

a−h,l

∩
(al, c1)} implying, via Eq. (3) (10)

va−h,l

∩
(c1)<max{va−h,l

∩
(ah), va−h,l

∩
(al)} i.e. (11)

v
∩
(c1a

−h,l)<max{v
∩
(a−l), v

∩
(a−h)} (12)

exhibiting one outgoing edge from c1a
−h,l, i.e. to a−l or a−h.

If Eq. (7) did not hold, then one can show as above, that for any L distinct
items b1...bL ∈ Sj\Sj+1, and c2 ∈ argmaxx∈Sj+1\Sj

v
∩
({x})

∃l ∈ 1..L with v
∩
(b1, . . . , bL) < v

∩
(b−l, c2) (13)

For L = |Sj \Sj+1|, this contradicts Sj ∈ Mj .



A.1 Other structural properties

We discuss extensions to sets of the characterizing Eq. (3) of GS valuations.

Proposition 3 Eq. (3) holds for a GS v and any sets a,b, item c and set S.

Proof. Suppose towards a contradiction that for some sets a, b (assume wlog that
|a| ≤ |b|), item c and set S Eq. (3) were false and choose such b with minimum
cardinality: note that b 6= ∅.

Let y ∈ b and let b′ = b \ y. By choice of b,

vSy(ab′) + vSy(c) ≤ max{vSy(ac) + vSy(b′), vSy(b′c) + vSy(a)} (14)

vSy(ab′) + vSy(c) ≤ vSy(ac) + vSy(b′) would contradict v’s submodularity as

vSy(ac) − vSy(c) ≥ vSy(ab′) − vSy(b′) > vS(ac) − vS(c) (15)

Thus10 vSy(b′c) + vSy(a) ≥ vSy(ab′) + vSy(c) > vSy(ac) + vSy(b′). If b′ = ∅ then
v’s submodularity would be violated. Thus |b| ≥ 2 and

vS(c) − vS(a) > vS(bc) − vS(ab) ≥ vSy(c) − vSy(a) i.e. (16)

vS(ay) + vS(c) > vS(cy) + vS(a), implying (17)

vS(ay) + vS(c) = vS(ac) + vS(y) (18)

where the equality holds since y, c are items and b was chosen of minimum
cardinality among sets a, b with |a| ≥ |b| violating Eq. (3). We have

vS(ab) − vS(b) > vS(ac) − vS(c) = vS(ay) − vS(y) (19)

violating v’s submodularity (y∈b), i.e. marginal decreasing value of a.

Note that unless a or b are also items, Prop. 3 does not imply equality of the
two highest quantities in Eq. (3).

Eq. (3) does not hold for sets in general. For example, for a concave multi-
unit valuation it does not hold for a = 1, b = 1, c = 2 copies of an item. Eq. (3)
does not hold even if a, b, c have the same cardinality. Consider 4 items of type X
and 2 of type Y , with valuation v(αX + βY ) = min(α, 2), clearly GS. However,
v(X1Y1X2Y2) + v(X3X4) = 4 > 3 = v(XiYiX3X4) + v(X3−iY3−i), for i =
1, 2. One can show however that v(123) + v(4) < max{v(234) + v(1), v(124) +
v(3), v(134) + v(2)}.

B Proof of Proposition 1

By optimality of S2 after having bought S1,

v(S1 ∪ S2) − r1|S1| − r2|S2| ≥ v(S1 ∪ S) − r1|S1| − r2|S|, ∀S ⊆ {1..n}\S1

i.e. v(S1 ∪ S2) − r2|S2| ≥ v(S1 ∪ (S′
2\S1)) − r2|S′

2\S1| for S = S′
2\S1

10 Cannot assume equality of LHS with RHS2 in Eq. (14) unless a is also an item.



By moving r2|S′
2\S1| to the left-hand side and subtracting r2|S′

2| we get,

v(S1 ∪ S2) − r2(|S2| − |S′
2\S1| + |S′

2|) ≥ v(S1 ∪ S′
2) − r2|S′

2|. (20)

By optimality of S′
2 for price r2 and S2 ∩ (S′

2 ∩ S1) = ∅ (as S2 ∩ S1 = ∅),

v(S′
2) − r2|S′

2| ≥ v(S2 ∪ (S′
2 ∩ S1)) − r2(|S2| + |S′

2 ∩ S1|) (21)

Adding Eqs. (20) and (21) and canceling r2 terms (|S′
2|−|S′

2\S1|= |S′
2 ∩ S1|),

v(S1 ∪ S2) + v(S′
2)>v(S1 ∪ S′

2) + v(S2 ∪ (S′
2∩S1)) i.e. (22)

v(S2 ∪ S1) − v(S2 ∪ (S′
2∩S1))>v((S′

2\S1) ∪ S1) − v(S′
2) (23)

S2 6⊃ S′
2\S1 follows from (S′

2\S1) ∪ (S′
2 ∩ S1) = S′

2 and v’s submodularity.

C Hierarchies and a class of HM, but not GS, valuations

We now define a set-based hierarchy: an example in the movie-based setting
is {comedies, romantic comedies, dramas}. In this particular set system, larger
(with respect to inclusion) sets are higher in the hierarchy.

Definition 9 Let n′ ∈ 1..n. A collection H of subsets of 1..n′ is an n′-hierarchy
if for any two sets H1, H2 in H, H1 ⊆ H2 or H2 ⊆ H1 or H1 ∩ H2 = ∅. Any
n′-hierarchy is an n′ + 1-hierarchy; an n-hierarchy is simply called a hierarchy.

A hierarchy is also known as a laminar family.
Hierarchies are closely related to GS valuations. Bing et al. [5] define two

non-disjoint GS classes based on hierarchies, including the following.

Definition 10 Given a n′-hierarchy H, an Sn′ -presentation is a valuation with

vH(S) =
∑

H∈H

cH(|H ∩ S|), ∀S ⊆ 1..n (24)

where cH is concave and increasing for all H ∈ H.

That is, vH is additively separable into concave, subset-dependent symmetric
(among common elements of S and H) functions cH . For example, a subset of
movies may have a value increasing linearly in the number of dramas and come-
dies and additionally at a sub-linear rate in the number of romantic comedies.

As shown by [5, 11],

Lemma 11 Any S-presentation is GS, i.e. it satisfies Eq. (3).

By Theorem 2 we get that S-presentations are HM.
We introduce a generalization of S-presentations that preserves the HM

property, but in general not the GS property. In our movie setting, the items
n′+1, . . . , n that are singled out can, for example, be seasons of TV shows, which
have elements of each genre.



Definition 11 Given a n′-hierarchy H, an Sn′ -presentation is a valuation with

vH(S) =
∑

H∈H

{cH(|H ∩ S|) + cH (|H ∩ (S∪{n′+1, . . . , n})|)} , ∀S ⊆ 1..n (25)

where cH is concave and increasing for all H ∈ H.

Any S-presentation corresponding to an n′-hierarchy H is an Sn-presentation.
Any such valuation is HM, as stated in Prop. 4 below, but it may not be GS,

as shown in Example 2 below.

Proposition 4 Any Sn′-presentation is HM.

Proof. A’s conditioning (marginal value) on S is vS
H
(A) = vH(S ∪ A) − vH(S).

It is enough to show that for any items a, b, c, set S:

vS
H
(a) < max{vS

H
(b), vS

H
(c)} or vS

H
(bc) ≤ max{vS

H
(ac), vS

H
(ab)} i.e.

(26)

v
H
(S∪a) < max{v

H
(S∪b), v

H
(S∪c)} or v

H
(S∪bc) ≤ max{v

H
(S∪ac), v

H
(S∪ab)}

(27)

Note that Eq. (3) implies Eq. (26): if the latter did not hold, then, by adding its
two alternatives, Eq. (3) would be contradicted.

Any H ∈ H with H ∩ {a, b, c} = ∅ can be dropped (H remains a hierarchy)
since it has no marginal contribution in any quantity in Eq. (26).

If a, b, c ∈ n′+1, . . . , n then Eq. (26) holds: a, b, c are treated equally by vH.
If a, b, c 6∈ n′+1, . . . , n then Eq. (26) holds for vH via Eq. (3):

vS
H
(A) = 2

∑

H∈H

{cH(|H ∩ (S ∪ A)|) − cH(|H ∩ S|)} , ∀A ⊆ {a, b, c}

which is the marginal value of an S-presentation defined as 2
∑

H∈H cH(|H∩S|).
Suppose |{a, b, c}∩ {n′+1, . . . , n}| = 2. If the first alternative in Eq. (26) did

not hold (i.e. vS
H
(a) ≥ max{vS

H
(b), vS

H
(c)}) then {a, b, c}∩{n′+1, . . . , n} = {b, c}.

But then for any H ∈ H (H can only contain a out of {a, b, c}), cH(|H∩(S∪bc)|) =
cH(|H ∩ S|) ≤ cH(|H ∩ (S∪ab)|) = cH(|H ∩ (S∪ac)|) ∈ {cH(|H ∩ S|), cH(1 +
|H ∩ S|)}. Thus Eq. (26)’s second alternative must hold in this case.

We are left with the case |{a, b, c} ∩ {n′+1, . . . , n}| = 1. If {a, b, c} ∩ {n′+
1, . . . , n} = {a} then cH(|H ∩ (S∪bc)|) ≤ cH(|H ∩ (S∪ab)|) = cH(|H ∩ (S∪ac)|).
We can assume wlog that {a, b, c} ∩ {n′+1, . . . , n} = {c}.

Let ηH = |H ∩ S|, ∀H ∈ H. For A ⊆ {a, b, c}, consider

valuation σA(S) =
∑

H∩{a,b}=A\{c} cH(|H ∩ (S ∪ A)|) thus (28)

vH(S) = σab(S) + σa(S) + σb(S) + σabc(S) + σac(S) + σbc(S)

τA :0..n→R, τA(x) =
∑

H∩{a,b}=A\{c} cH(x + ηH) (29)

Assume cH(ηH) = 0 i.e. τA(0) = 0 by subtracting cH(ηH) from any cH . Thus



vH(S ∪ a) = 2τab(1)+2τa(1) vH(S ∪ bc) = τab(1)+τb(1)+τab(2)+τa(1)+τb(2)
vH(S ∪ b) = 2τab(1)+2τb(1) vH(S ∪ ac) = τab(1)+τa(1)+τab(2)+τa(2)+τb(1)
vH(S ∪ c) = τab(1)+τa(1)+τb(1) vH(S ∪ ab) = 2τab(2)+2τa(2)+2τb(2)

Note that 2vH(S ∪ c) + 2τab(1) = vH(S ∪ a) + vH(S ∪ b) and thus c cannot be
favored analogously to a in Eq. (26). Since the argument so far is symmetric in
a and b (but not in c!), it is enough to ensure Eq. (26) for a. We have

vH(S ∪ a) ≥ vH(S ∪ b) ⇐⇒ τa(1)≥τb(1) (30)

vH(S ∪ a) ≥ vH(S ∪ c) ⇐⇒ τa(1) + τab(1)≥τb(1) (31)

vH(S ∪ bc) > vH(S ∪ ac) ⇐⇒ τb(2) > τa(2) (32)

vH(S ∪ bc) > vH(S ∪ ab) ⇐⇒ τab(1) + τb(2) > τab(2) + τa(1) + τb(1) (33)

Suppose Eq. (26) did not hold. Then Eq. (30) must hold (and thus Eq. (31))
and imply in Eq. (33): τab(1) + τb(2) > τab(2) + 2τb(1) i.e. 0 ≥ τab(1)− τab(2) >
2τb(1) − τb(2), contradicting τb’s concavity (also recall τb(0) = 0).

The inclusion of GS in the class of Sn′ -presentations is strict.

Example 2 Consider the following S2-presentation for n′ = 2, n = 3 with H =
{{a, b}, {a}, {b}}: cab(1) = ca(1) = 1, cab(2) = ca(2) = 1.5, vb(1) = 1, vb(2) =
1.8. Then vH(a) + vH(bc) > max{vH(b) + vH(ac), vH(c) + vH(ab)}, i.e. Eq. (3)
is violated and vH is not GS.

D Lemmas from Section 5

Lemma 12 [8] Consider a monotone submodular function f : 1..m → R. Con-
sider random set I by choosing each buyer in 1..m independently with probability
at least p. Then E[f(I)] ≥ p · f(I).

Proof (of Lemma 9). Assume Fv(p) > 0 (otherwise second statement trivially
holds) and let S ∈ Dv(p) be a minimal preferred set (by v) at price p: |S| = Fv(p).

We claim that Fαv⊕x(p) > 0; otherwise ∅ ∈ Dαv⊕x(p) implying 0 ≥ αv(S) +
x−p|S| > v(S)−p|S|, contradicting S ∈ Dv(p). Let Sα ∈ Dαv⊕x(p) be a minimal
preferred set (by αv ⊕ x) at price p: |Sα| = Fαv⊕x.

Suppose towards a contradiction Fv(p) > Fαv⊕x(p), implying Sα 6∈ Dv(p).
Thus, at price p, S is strictly preferred by v to Sα i.e.

v(S) − pFv(p) > v(Sα) − pFαv⊕x(p) i.e. (34)

v(S) − v(Sα) > pFv(p) − pFαv⊕x(p) > 0 implying (35)

αv(S) − αv(Sα) > pFv(p) − pFαv⊕x(p) i.e. (36)

αv(S) + x − pFv(p) > αv(Sα) + x − pFαv⊕x(p) (37)

i.e. S is strictly preferred to Sα by αv ⊕ x at p, contradicting Sα ∈ Dαv⊕x(p).


