12 research outputs found

    Comparative host genomics: how has human evolution affected our immune defence against hepatitis C virus?

    Get PDF
    No abstract available

    Inhibition of hepatitis C virus RNA replication by ISG15 does not require its conjugation to protein substrates by the HERC5 E3 ligase

    Get PDF
    Chronic infection of the liver by hepatitis C virus (HCV) induces a range of host factors including IFN-stimulated genes such as ISG15. ISG15 functions as an antiviral factor that limits virus replication. Previous studies have suggested that ISG15 could influence HCV replication in both a positive and a negative manner. In this report, we determined the effect of ISG15 on HCV RNA replication in two independent cell lines that support viral genome synthesis by inhibiting ISG15 expression through small interfering RNA, short-hairpin RNA and CRISPR/Cas9 gene knockout approaches. Our results demonstrated that ISG15 impairs HCV RNA replication in both the presence and absence of IFN stimulation, consistent with an antiviral role for ISG15 during HCV infection. ISG15 conjugation to protein substrates typically requires the E3 ligase, HERC5. Our results showed that the inhibitory effect of ISG15 on HCV RNA replication does not require its conjugation to substrates by HERC5

    An interferon lambda 4-associated variant in the hepatitis C virus RNA polymerase affects viral replication in infected cells

    Get PDF
    Host IFNL4 haplotype status contributes to the development of chronic hepatitis C virus infection in individuals who are acutely infected with the virus. In silico studies revealed that specific amino acid variants at multiple sites on the HCV polyprotein correlate with functional single nucleotide polymorphisms (SNPs) in the IFNL4 locus. Thus, SNPs at the IFNL4 locus may select variants that influence virus replication and thereby outcome of infection. Here, we examine the most significantly IFNL4-associated amino acid variants that lie in the ‘Lambda (L) 2 loop’ of the HCV NS5B RNA polymerase. L2 loop variants were introduced into both sub-genomic replicon and full-length infectious clones of HCV and viral replication examined in the presence and absence of exogenous IFNλ4. Our data demonstrate that while mutation of NS5B L2 loop affects replication, individual IFNL4-associated variants have modest but consistent effects on replication both in the presence and absence of IFNλ4. Given the strong genetic association between these variants and IFNL4, these data suggest a nuanced effect of each individual position on viral replication, the combined effect of which might mediate resistance to the effects of IFNλ4

    Comparative analysis of genome-encoded viral sequences reveals the evolutionary history of flavivirids (family Flaviviridae)

    Get PDF
    The flavivirids (family Flaviviridae) are a group of positive-strand RNA viruses that pose serious risks to human and animal health on a global scale. Here we use flavivirid-derived DNA sequences, identified in animal genomes, to reconstruct the long-term evolutionary history of family Flaviviridae. We demonstrate that flavivirids are >100 million years old and show that this timing can be combined with dates inferred from co-phyletic analysis to produce a cohesive overview of their evolution, distribution and diversity wherein the main flavivirid subgroups originate in early animals and broadly co-diverge with major animal phyla. In addition, we reveal evidence that the ‘classical flaviviruses’ of vertebrates, most of which are transmitted via blood-feeding arthropod vectors, originally evolved in hematophagous arachnids and later acquired the capacity to be transmitted by insects. Our findings imply that the biological properties of flavivirids have been acquired gradually over the course of animal evolution. Thus, broad-scale comparative analysis will likely reveal fundamental insights into their biology. We therefore published our results via an open, extensible, database (Flavivirid-GLUE), which we constructed to facilitate the wider utilisation of genomic data and evolution-related domain knowledge in flavivirid research

    A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages

    Get PDF
    As antimicrobial signalling molecules, type III or lambda interferons (IFNλs) are critical for defence against infection by diverse pathogens, including bacteria, fungi and viruses. Counter-intuitively, expression of one member of the family, IFNλ4, is associated with decreased clearance of hepatitis C virus (HCV) in the human population; by contrast, a natural frameshift mutation that abrogates IFNλ4 production improves HCV clearance. To further understand how genetic variation between and within species affects IFNλ4 function, we screened a panel of all known extant coding variants of human IFNλ4 for their antiviral potential and identify three that substantially affect activity: P70S, L79F and K154E. The most notable variant was K154E, which was found in African Congo rainforest ‘Pygmy’ hunter-gatherers. K154E greatly enhanced in vitro activity in a range of antiviral (HCV, Zika virus, influenza virus and encephalomyocarditis virus) and gene expression assays. Remarkably, E154 is the ancestral residue in mammalian IFNλ4s and is extremely well conserved, yet K154 has been fixed throughout evolution of the hominid genus Homo, including Neanderthals. Compared to chimpanzee IFNλ4, the human orthologue had reduced activity due to amino acid K154. Comparison of published gene expression data from humans and chimpanzees showed that this difference in activity between K154 and E154 in IFNλ4 correlates with differences in antiviral gene expression in vivo during HCV infection. Mechanistically, our data show that the human-specific K154 negatively affects IFNλ4 activity through a novel means by reducing its secretion and potency. We thus demonstrate that attenuated activity of IFNλ4 is conserved among humans and postulate that differences in IFNλ4 activity between species contribute to distinct host-specific responses to—and outcomes of—infection, such as HCV infection. The driver of reduced IFNλ4 antiviral activity in humans remains unknown but likely arose between 6 million and 360,000 years ago in Africa

    A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages

    Get PDF
    As antimicrobial signalling molecules, type III or lambda interferons (IFNλs) are critical for defence against infection by diverse pathogens, including bacteria, fungi and viruses. Counter-intuitively, expression of one member of the family, IFNλ4, is associated with decreased clearance of hepatitis C virus (HCV) in the human population; by contrast, a natural frameshift mutation that abrogates IFNλ4 production improves HCV clearance. To further understand how genetic variation between and within species affects IFNλ4 function, we screened a panel of all known extant coding variants of human IFNλ4 for their antiviral potential and identify three that substantially affect activity: P70S, L79F and K154E. The most notable variant was K154E, which was found in African Congo rainforest ‘Pygmy’ hunter-gatherers. K154E greatly enhanced in vitro activity in a range of antiviral (HCV, Zika virus, influenza virus and encephalomyocarditis virus) and gene expression assays. Remarkably, E154 is the ancestral residue in mammalian IFNλ4s and is extremely well conserved, yet K154 has been fixed throughout evolution of the hominid genus Homo, including Neanderthals. Compared to chimpanzee IFNλ4, the human orthologue had reduced activity due to amino acid K154. Comparison of published gene expression data from humans and chimpanzees showed that this difference in activity between K154 and E154 in IFNλ4 correlates with differences in antiviral gene expression in vivo during HCV infection. Mechanistically, our data show that the human-specific K154 negatively affects IFNλ4 activity through a novel means by reducing its secretion and potency. We thus demonstrate that attenuated activity of IFNλ4 is conserved among humans and postulate that differences in IFNλ4 activity between species contribute to distinct host-specific responses to—and outcomes of—infection, such as HCV infection. The driver of reduced IFNλ4 antiviral activity in humans remains unknown but likely arose between 6 million and 360,000 years ago in Africa

    Interferon lambda 4 impacts the genetic diversity of hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) is a highly variable pathogen that frequently establishes chronic infection. This genetic variability is affected by the adaptive immune response but the contribution of other host factors is unclear. Here, we examined the role played by interferon lambda-4 (IFN-λ4) on HCV diversity; IFN-λ4 plays a crucial role in spontaneous clearance or establishment of chronicity following acute infection. We performed viral genome-wide association studies using human and viral data from 485 patients of white ancestry infected with HCV genotype 3a. We demonstrate that combinations of host genetic variants, which determine IFN-λ4 protein production and activity, influence amino acid variation across the viral polyprotein - not restricted to specific viral proteins or HLA restricted epitopes - and modulate viral load. We also observed an association with viral di-nucleotide proportions. These results support a direct role for IFN-λ4 in exerting selective pressure across the viral genome, possibly by a novel mechanism

    Flexible, disposable photocatalytic plastic films for the destruction of viruses

    No full text
    A thin, 30 μm, flexible, robust low-density polyethylene, LDPE, film, loaded with 30 wt% P25 TiO(2), is extruded and subsequently rendered highly active photocatalytically by exposing it to UVA (352 nm, 1.5 mW cm(−2)) for 144 h. The film was tested for anti-viral activity using four different viruses, namely, two strains of Influenza A Virus (IAV), WSN, and a recombinant PR8, encephalomyocarditis virus (EMCV), and SARS-CoV-2 (SARS2). The film was irradiated with either UVA radiation (352 nm, 1.5 mW cm(−2); although only 0.25 mW cm(−2) for SARS2) or with light from a cool white fluorescent lamp (UVA irradiance: 365 nm, 0.047 mW cm(−2)). In all cases the films exhibited an average virus inactivation rate of >1.5log/h. In the case of SARS2, the rates were > 2log/h, with the rate determined using a dedicated, low intensity UVA source (0.25 mW cm(−2)) only 1.3 x's faster than that for a cool white lamp (UVA irradiance = 0.047 mW cm(−2)), which suggests that SARS2 is particularly prone to photocatalytic inactivation even under low UV irradiation conditions, such as found in a room lit with just white fluorescent tubes. This is the first example of a flexible, very thin, photocatalytic plastic film, produced by a scalable process (extrusion), for virus inactivation. The potential of such a film for use as a disposable, self-sterilising thin plastic material alternative to the common, non-photocatalytic, inert equivalent used currently for curtains, aprons and table coverings in healthcare is discussed briefly

    An Endogenously activated antiviral state restricts SARS-CoV-2 infection in differentiated primary airway epithelial cells

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and caused >5 million deaths by February 2022. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ1) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) culture model derived from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ1 expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ1 secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection
    corecore