107 research outputs found

    A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure

    Full text link
    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment

    Targeted Estimation and Inference for the Sample Average Treatment Effect

    Get PDF
    While the population average treatment effect has been the subject of extensive methods and applied research, less consideration has been given to the sample average treatment effect: the mean difference in the counterfactual outcomes for the study units. The sample parameter is easily interpretable and is arguably the most relevant when the study units are not representative of a greater population or when the exposure\u27s impact is heterogeneous. Formally, the sample effect is not identifiable from the observed data distribution. Nonetheless, targeted maximum likelihood estimation (TMLE) can provide an asymptotically unbiased and efficient estimate of both the population and sample parameters. In this paper, we study the asymptotic and finite sample properties of the TMLE for the sample effect and provide a conservative variance estimator. In most settings, the sample parameter can be estimated more efficiently than the population parameter. Finite sample simulations illustrate the potential gains in precision and power from selecting the sample effect as the target of inference. As a motivating example, we discuss the Sustainable East Africa Research in Community Health (SEARCH) study, an ongoing cluster randomized trial for HIV prevention and treatment

    Statistical Analysis Plan for Primary and Selected Secondary Health Endpoints of the SEARCH-Youth Study

    Full text link
    This document provides the statistical analytic plan (SAP) for evaluating health outcomes in the SEARCH-Youth study, a cluster randomized trial designed to evaluate the effect of a combination intervention on HIV viral suppression among adolescents and young adults with HIV in rural Uganda and Kenya (Clinicaltrials.gov: NCT03848728). The SAP was locked prior to unblinding and effect estimation. This SAP was embargoed until November 04, 2022 when it was submitted to arXiv.Comment: 14 pages, 1 figur
    • …
    corecore