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Targeted Estimation and Inference for the
Sample Average Treatment Effect

Laura B. Balzer, Maya L. Petersen, and Mark J. van der Laan

Abstract

While the population average treatment effect has been the subject of extensive
methods and applied research, less consideration has been given to the sample
average treatment effect: the mean difference in the counterfactual outcomes for
the study units. The sample parameter is easily interpretable and is arguably the
most relevant when the study units are not representative of a greater population
or when the exposure’s impact is heterogeneous. Formally, the sample effect is
not identifiable from the observed data distribution. Nonetheless, targeted maxi-
mum likelihood estimation (TMLE) can provide an asymptotically unbiased and
efficient estimate of both the population and sample parameters. In this paper,
we study the asymptotic and finite sample properties of the TMLE for the sample
effect and provide a conservative variance estimator. In most settings, the sample
parameter can be estimated more efficiently than the population parameter. Finite
sample simulations illustrate the potential gains in precision and power from se-
lecting the sample effect as the target of inference. As a motivating example, we
discuss the Sustainable East Africa Research in Community Health (SEARCH)
study, an ongoing cluster randomized trial for HIV prevention and treatment.



1 Introduction

In many studies, the goal is to estimate the impact of an exposure on the outcome of interest.
Often the target causal parameter is the population average treatment effect (PATE): the expected
difference in the counterfactual outcomes if all members of some population were exposed and
if all members of that population were unexposed. If there are no unmeasured confounders and
there is sufficient variability in the exposure assignment (i.e. if the randomization and positivity
assumptions hold), then we can identify the causal parameter as a function of the observed data
distribution (Rosenbaum and Rubin, 1983; Robins, 1986). The resulting statistical parameter can
be estimated with a variety of algorithms.

Alternate causal parameters, receiving less attention, include the sample average treatment
effect (SATE) and the conditional average treatment effect (CATE). The sample effect is the average
difference in the counterfactual outcomes for the actual study units (Neyman, 1923). In other words,
the SATE is the intervention effect for the sample at hand. The SATE remains interpretable if the
study units are not reflective of a larger population and is responsive to variations in the intervention
effect by measured and unmeasured covariates. The conditional effect is the average difference in
the expected counterfactual outcomes, treating the baseline covariates of the study units as fixed
(Abadie and Imbens, 2002). In other words, the CATE is the intervention effect, given the measured
covariates of the sample units. The exact interpretation and the variability of the CATE depend
on the conditioning set. Another key difference between the three parameters is in the variance
of common estimators. As shown by Imbens (2004) and elaborated here, an efficient estimator of
the sample parameter is often more precise than the same estimator of the conditional parameter,
which is, in turn, often more precise than the same estimator of the population parameter.

To the best of our knowledge, this is the first paper to propose using targeted maximum like-
lihood estimation (TMLE) for the SATE. TMLE is a general algorithm for constructing double
robust, semiparametric efficient, substitution estimators (van der Laan and Rubin, 2006; van der
Laan and Rose, 2011). Even though the SATE is not identified, we prove that the TMLE, presented
here, is an asymptotically linear estimator of the SATE and provide a conservative approximation
of its influence curve. Our results generalize the variance derivations of Imbens (2004) to allow
misspecification of the outcome regression (i.e. the conditional mean outcome, given the expo-
sure and covariates) and estimation of the propensity score (i.e. the conditional probability of the
receiving the exposure, given the covariates). Simulations are used to evaluate the finite sample
performance of our point estimator and proposed variance estimator. The simulations also serve to
highlight the differences between the three causal parameters and the potential gains in power from
selecting the sample effect as the target of inference. We begin by reviewing the structural causal
model of Pearl (1995) and motivate our discussion with the Sustainable East Africa Research in
Community Health (SEARCH) trial for HIV prevention and treatment (NCT01864603) (University
of California, San Francisco, 2013).

2 Causal Model & Causal Parameters

SEARCH is an ongoing cluster randomized trial to evaluate the effect of a community-based strategy
for HIV prevention and treatment in rural East Africa. In intervention communities, all individuals
testing HIV+ are immediately eligible for antiretroviral therapy (ART) with streamlined delivery,
including enhanced services for initiation, linkage, and retention in care. In control communities,
all individuals testing HIV+ are offered ART according to in-country guidelines, largely based on
CD4+ T cell counts. The study hypothesis is that ART initiation at any CD4 count and with
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streamlined delivery will reduce the five-year cumulative HIV incidence. The primary outcome
as well as other health, educational and economic outcomes will be measured among approxi-
mately 320,000 individuals, enrolled in the study. For the purposes of discussion, we focus on the
community-level data. Thereby, our results are equally applicable to clustered and non-clustered
data structures.

Consider the following data generating process for a randomized trial with two arms. First,
the study units are selected. While some trials obtain a simple random sample from a well-defined
population, in many other studies the selection of units is more systematic. In the SEARCH
trial, for example, 32 communities were selected from Western Uganda (Mbarara region), Eastern
Uganda (Tororo region) and the Southern Nyanza Province in Kenya. These communities satisfied
the study’s inclusion criteria, including community size, health care infrastructure and accessibility
by a maintained transportation route. Next, the baseline covariates W are measured. Throughout
we use “baseline” to refer to covariates measured prior to implementation of the intervention. For
the SEARCH trial, these include region, occupational mix, migration index, male circumcision
coverage and measures of HIV prevalence.

Next, the intervention is randomized to the study units. Balanced allocation of the intervention
can be guaranteed by randomly assigning the intervention to n/2 units and the control to remaining
units or by randomizing within matched pairs. In the SEARCH trial, for example, communities
were first matched on baseline covariates and then the intervention randomized within the resulting
16 matched pairs (Balzer et al., 2015). For ease of exposition, we present the causal model for the
simple scenario, where the intervention is completely randomized, but our results are general. Let
A be a binary variable, reflecting the assigned level of the intervention. For the SEARCH trial,
A equals one if the community was assigned to the treatment (all individuals testing positive for
HIV are immediately offered ART with streamlined care) and equals zero if the community was
assigned to the control (all individuals testing positive for HIV are offered ART according to in-
country guidelines). At the end of followup, the outcome Y is measured. For the SEARCH trial, Y
is the five-year cumulative incidence of HIV and will be measured through longitudinal follow-up.
The observed data for a given study unit are then

O = (W,A, Y )

We observe n independent, identically distributed (i.i.d.) copies of O with distribution P0. We note
that for estimation and inference of the sample and conditional effects, we can weaken the i.i.d.
assumption. In particular, we do not need any assumptions on the joint distribution of covariates
P0(W1, . . . ,Wn). For further details, see Balzer et al. (2015).

This data generating process can be described by the following structural causal model (SCM)
(Pearl, 1995, 2000). Each component of the observed data is assumed to be a deterministic function
of its parents (variables that may influence its value) and unobservable background factors:

W = fW (UW )

A = I(UA < 0.5)

Y = fY (W,A,UY )

Let X = (W,A, Y ) denote the set of endogenous factors and U = (UW , UA, UY ) denote the set of
the background factors with joint distribution PU . By design, the random error determining the
intervention assignment UA is independent from the unmeasured factors contributing the baseline
covariates UW and the outcome UY :

UA ⊥⊥ (UW , UY )
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Specifically, UA is independently drawn from a Uniform(0,1). The causal model MF provides the
set of allowed distributions for (U,X) and implies the statistical model M for the set of possible
distributions of the observed data O. The true joint distribution of the background and endogenous
factors PU,X,0 is an element ofMF , and the true distribution of the observed data P0 is an element
of M. In a randomized trial, the statistical model is semiparametric.

Through interventions on the SCM, we can generate the counterfactual outcome Y (a), which
is the outcome if possibly contrary-to-fact the unit was assigned A = a:

W = fW (UW )

A = a

Y (a) = fY (W,a, UY )

The distribution of the counterfactuals can then be used to define the causal parameter of interest.
Often, the target of inference is the population average treatment effect (PATE):

ΨP(PU,X) = EU,X

[
Y (1)− Y (0)

]
where the subscript (U,X) denotes the expectation over the distribution of PU,X (which implies the
distribution of the counterfactual outcomes). This causal parameter is the expected difference in
the counterfactual outcomes for underlying target population from which the units were sampled.
For the SEARCH trial, ΨP(PU,X) is the difference in the expected counterfactual cumulative inci-
dence of HIV if possibly contrary-to-fact all communities in some hypothetical target population
implemented the test-and-treat strategy, and expected counterfactual cumulative incidence of HIV
if possibly contrary-to-fact all communities in that hypothetical target population continued with
the standard of care. From the SCM, we see that the expectation is over the measured factors W
and unmeasured factors UY , which determine the counterfactual outcomes for the population. In
other words, the true value of ΨP(PU,X) does not depend on the sampled values of W or UY .

An alternative causal estimand is the sample average treatment effect (SATE), which was first
proposed in Neyman (1923):

ΨS(PU,X) =
1

n

n∑
i=1

Yi(1)− Yi(0)

This is simply the intervention effect for the study units. For the SEARCH trial, ΨS(PU,X) is the av-
erage difference in the counterfactual cumulative incidence of HIV under the test-and-treat strategy
and under the standard of care for the n = 32 study communities. The parameter is data-adaptive;
its value changes with each new selection or sample of units. The SATE remains interpretable if
the study units were systematically selected and is responsive to variation in intervention effect by
measurable and unmeasurable factors (i.e {W,UY }).

An intermediate between the population and sample parameters is the conditional average
treatment effect (CATE), which was first proposed in Abadie and Imbens (2002):

ΨC(PU,X) =
1

n

n∑
i=1

EU,X

[
Yi(1)− Yi(0)

∣∣W1, . . . ,Wn

]
=

1

n

n∑
i=1

EU,X

[
Yi(1)− Yi(0)

∣∣Wi

]
where the second equality holds under our assumption that study units are causally independent
(i.e. the baseline covariates and intervention assignment of one unit do not affect the outcome of
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another unit). This parameter is the difference in the expected counterfactual outcomes, treating
the measured covariates of the study units as fixed. For the SEARCH trial, ΨC(PU,X) is interpreted
as the average difference in the expected counterfactual cumulative incidence of HIV under the test-
and-treat strategy and under the standard of care, given the measured covariates of the n = 32
study communities. From the SCM, we see that the expectation is over the unmeasured factors UY

that determine the counterfactual outcomes.
The exact interpretation, the true value and the variability of the CATE depend on the condi-

tioning set. As an extreme example, suppose that in the SEARCH trial the only measured covariate
were region. Then we would interpret ΨC(PU,X) as the treatment effect, given the regional distribu-
tion of communities. If the regional distribution were set by design (e.g. 10 communities in Eastern
Uganda, 10 communities in Western Uganda and 12 communities in Kenya), then we would obtain
the same value ΨC(PU,X) over repeated studies. In other words, we would be averaging out all the
other factors contributing to HIV incidence. Now suppose the set of measured covariates included
both region (set by design) and baseline HIV prevalence (varying from community to community).
Then we would interpret the CATE as the treatment effect, given the regional distribution and
baseline prevalence of the study communities. Over repeated studies, the value of the CATE would
change due the differences in the sampled values of baseline prevalence.

3 Identifiability

To identify the above causal effects, we must write them as some function of the observed data
distribution. Under the randomization and positivity assumptions, we can identify the mean coun-
terfactual outcome within strata of covariates (Rosenbaum and Rubin, 1983; Robins, 1986):

EU,X,0

[
Y (a)|W

]
= EU,X,0

[
Y (a)|A = a,W

]
= E0

[
Y |A = a,W

]
where the subscript 0 denotes the expectation over the true distribution. (Recall PU,X,0 is the true
joint distribution of the background and endogenous factors and P0 is the true distribution of the
observed data.) Briefly, the randomization assumption states that the counterfactual outcome is
independent of the exposure, given the measured covariates: A ⊥⊥ Y (a)|W . This is equivalent to the
no unmeasured confounders assumption (Rosenbaum and Rubin, 1983). The positivity assumption
states that there is sufficient variability in the exposure assignment within strata of covariates. Both
assumptions hold by design in a randomized trial. As a well known result, the PATE ΨP(PU,X,0)
is easily identified as

ΨP0 (P0) = E0

[
E0(Y |A = 1,W )− E0(Y |A = 0,W )

]
= E0

[
Q̄0(1,W )− Q̄0(0,W )

]
where Q̄0(A,W ) = E0(Y |A,W ) denotes the conditional mean outcome, given the exposure and
covariates. This statistical estimand is also called the G-computation identifiability result (Robins,
1986). For the SEARCH trial, ΨP0 (P0) is the difference in expected cumulative incidence of HIV,
given the treatment and measured covariates, and the expected cumulative incidence of HIV, given
the control and measured covariates, averaged (standardized) with respect to the covariate distri-
bution in the population. As with the causal parameter, there is one true value ΨP0 (P0) = ψP0 for
the population. In a randomized trial, conditioning on the covariates W is not needed for identifia-
bility, but can provide efficiency gains during estimation (e.g. Fisher (1932); Cochran (1957); Cox
and McCullagh (1982); Tsiatis et al. (2008); Moore and van der Laan (2009)).
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Analogously, we can identify the CATE ΨC(PU,X,0) as

ΨC0(P0) =
1

n

n∑
i=1

[
E0(Yi|Ai = 1,Wi)− E0(Yi|Ai = 0,Wi)

]
=

1

n

n∑
i=1

[
Q̄0(1,Wi)− Q̄0(0,Wi)

]
(1)

This statistical estimand is the difference in the conditional expectation of the outcome, given the
intervention and measured covariates, evaluated at the treatment vs. control level of the inter-
vention, but now averaged over the sampled values of the measured covariates. For the SEARCH
study, ΨC0(P0) is the sample average of the difference in expected cumulative incidence of HIV,
given the treatment and measured covariates, and the expected cumulative incidence of HIV, given
the control and measured covariates. As with the CATE, the interpretation, the true value and the
variability of ΨC0(P0) depend on both the conditioning set and the sample.

Unlike the other two causal parameters, the SATE is non-identifiable. We cannot write the
causal parameter as a function of the observed data distribution. This point has not received much
attention. Instead, researchers have largely focused on the lack of identifiability of the variance of
standard estimators (Neyman, 1923; Rubin, 1990; Imbens, 2004; Imai, 2008). To elaborate, let us
use the structural causal model MF to rewrite the SATE in terms of the CATE:

ΨS(PU,X) =
1

n

n∑
i=1

Yi(1)− Yi(0)

=
1

n

n∑
i=1

fY (Wi, 1, UYi)− fY (Wi, 0, UYi)

=
1

n

n∑
i=1

EU,X

[
Yi(1)− Yi(0)

∣∣Wi, UYi

]
The second equality is from the definition of counterfactuals as interventions on the causal model.
The final equality is the CATE, given the measured baseline covariates as well as the unmeasured
factors. If we had access to all pre-intervention covariates impacting the outcome (i.e. {W,UY }),
then we could apply the results for estimation and inference for the conditional parameter, as
detailed in Balzer et al. (2015). In reality, we only measure a subset of these covariates (i.e.
W ) and only this subset is available for estimation and inference. Nonetheless, we show below
that the TMLE is asymptotically linear for the SATE and the corresponding variance estimator is
asymptotically conservative.

4 Estimation & Inference

There are many well-established algorithms for estimation of the population parameter ΨP0 (P0).
For example, matching and inverse weighting estimators rely on knowledge or estimation of the
propensity score, which is the conditional probability of being exposed, given the covariates P0(A =
1|W ) (e.g. Horvitz and Thompson (1952); Rosenbaum and Rubin (1983); Robins (1993); Hernán
et al. (2006)). Simple substitution estimators rely on estimation of the outcome regression, which
is the conditional mean outcome given the exposure and covariates Q̄0(A,W ) = E0(Y |A,W ) (e.g.
Robins (1986); Ahern et al. (2009); Snowden et al. (2011)). A third class of estimators requires
estimation of both the propensity score and the outcome regression. This class includes augmented
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inverse probability of treatment weighting (AIPTW) (e.g. Robins et al. (1994); Rotnitzky et al.
(1998); Robins et al. (2000); van der Laan and Robins (2003)) and TMLE (e.g. van der Laan
and Rubin (2006); van der Laan and Rose (2011)). These estimators are double robust in that
they will be consistent if either the propensity score or the outcome regression is consistently
estimated. If both functions are consistently estimated at a fast enough rate and there is sufficient
variability in the propensity score, these estimators are also asymptotically efficient in that they
attain the lowest possible variance among a large class of regular, asymptotically linear estimators.
An important distinction between AIPTW and TMLE is that the former is based on solving an
estimating equation, while the latter is a substitution estimator, providing stability in the context
of sparsity (Gruber and van der Laan, 2010; Balzer et al., 2014). We focus our discussion on TMLE
in a randomized trial and provide generalizations to an observational setting.

4.1 For the Population Parameter

For the population estimand, a TMLE can be implemented with the following steps. First, we
obtain an initial estimate of the outcome regression Q̄0(A,W ). This function can be estimated
with maximum likelihood or with an a priori specified data-adaptive procedure, such as Super
Learner (van der Laan et al., 2007). In a randomized trial, the propensity score g0(1|W ) = P0(A =
1|W ) is known and does not need to be estimated. In the two-armed trial, for example, we have
g0(1|W ) = g0(1) = 0.5. Estimation of the propensity score, however, can improve efficiency by
capturing chance imbalances in the covariate distribution between treatment groups (e.g. van der
Laan and Robins (2003); Moore and van der Laan (2009)). We could, for example, obtain an
estimator gn(1|W ) by running logistic regression of the intervention A on the measured covariates
W .

Next, we target the initial estimator of the outcome regression Q̄n(A,W ). This targeting
step uses information in the propensity score to obtain the optimal bias-variance tradeoff for the
parameter of interest and to solve the efficient score equation. It is accomplished by running

logistic regression1 of the outcome Y on the covariate Hn(A,W ) =
(

I(A=1)
gn(1|W ) −

I(A=0)
gn(0|W )

)
with the

logit(x) = log{x/(1 − x)} of the initial estimator Q̄n(A,W ) as offset. The estimated coefficient
εn is then plugged into the fluctuation model to yield targeted updates of the outcome regression
under the treatment and under the control:

Q̄∗n(1,W ) = expit

[
logit

[
Q̄n(1,W )

]
+ εnHn(1,W )

]
Q̄∗n(0,W ) = expit

[
logit

[
Q̄n(0,W )

]
+ εnHn(0,W )

]
where expit is the inverse of the logit function and where the ∗ denotes the targeted estimator.
In a randomized trial, if the propensity score is treated as known (i.e. not estimated) and the
regression model used for initial estimation of Q̄0(A,W ) contains an intercept and a main term
for the exposure, then this targeting step will not yield an update and can be skipped (Moore
and van der Laan, 2009; Rosenblum and van der Laan, 2010). Lastly, the targeted estimates are
substituted into the parameter mapping:

Ψn(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
1As detailed in Gruber and van der Laan (2010), the same procedure can be applied to a bounded continuous

outcome and adds robustness in the context of sparsity.
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where Pn denotes the empirical distribution, placing mass 1/n on each observation Oi. The sample
mean is the nonparametric maximum likelihood estimator of the marginal distribution of baseline
covariates.

Under regularity conditions, the TMLE is a consistent and asymptotically linear estimator of
the population parameter (van der Laan and Rubin, 2006):

Ψn(Pn)−ΨP0 (P0) =
1

n

n∑
i=1

DP(Q̄, g0)(Oi) + oP (1/
√
n)

with influence curve

DP(Q̄, g0)(O) = DY (Q̄, g0)(O) +DW (Q̄, g0)(O)

DY (Q̄, g0)(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
DW (Q̄, g0)(O) = Q̄(1,W )− Q̄(0,W )− ψP0

where Q̄(A,W ) denotes the limit of the TMLE Q̄∗n(A,W ) and we are assuming the propensity score
is known or consistently estimated, as will always be true when A is randomized. The first term
of the influence curve DY is the weighted residuals (i.e. weighted deviations between the observed
outcome and the limit of the predicted outcome). The second term DW is deviation between the
limit of the estimated strata-specific association and the marginal association.

The standardized estimator is asymptotically normal with variance given by the variance of its
influence curve, divided by sample size n. Under consistent estimation of the outcome regression
(i.e. when Q̄(A,W ) = Q̄0(A,W )), the TMLE will be asymptotically efficient and achieve the lowest
possible variance among a large class of estimators (Bickel et al., 1993). In other words, its influ-
ence curve equals the efficient influence curve. Thereby, improved estimation of conditional mean
outcome leads to more precise estimators of the population effect. In a randomized trial, adjusting
for measured baseline covariates with TMLE can lead to substantial efficiency gains without risk
of bias due to regression model misspecification (Moore and van der Laan, 2009; Rosenblum and
van der Laan, 2010). In finite samples, the variance of the TMLE is well-approximated by the sam-
ple variance of the estimated influence curve, divided by sample size. The algorithm is available in
the tmle (Gruber and van der Laan, 2012) and ltmle (Schwab et al., 2014) packages in R (R Core
Team, 2014).

4.2 For the Conditional Parameter

The TMLE for the population parameter ΨP0 (P0) also serves as an estimator of the conditional
parameter ΨC0(P0). The steps are analogous with one important exception. In the final step of
substituting in the targeted estimates, the empirical mean is now considered part of the parameter
mapping (Eq. 1) and not an estimator of the covariate distribution, which is considered fixed. As
a result, there is no contribution to the variance from the covariate distribution. Thereby, estima-
tors of the conditional parameter are often more efficient than those of the population parameter
(Imbens, 2004; Abadie and Imbens, 2008; Imbens, 2011).

The TMLE is also a consistent and asymptotically linear estimator of the conditional estimand
(Balzer et al., 2015):

Ψn(Pn)−ΨC0(P0) =
1

n

n∑
i=1

DC(Q̄, g0)(Oi) + oP (1/
√
n)

7
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with influence curve given by

DC(Q̄, g0)(O) = DY (Q̄, g0)(O)− E0

[
DY (Q̄, g0)(O)

∣∣W]
where W = (W1, . . . ,Wn) denotes the vector of baseline covariates for the study units. The influ-
ence curve of the TMLE for ΨC0(P0) depends on the true conditional mean outcome Q̄0(A,W ). In
particular, the conditional expectation of the DY component, given the vector of baseline covariates,
equals the deviation between the true mean and the limit of the estimated mean:

E0

[
DY (Q̄, g0)(O)

∣∣W]
=
[
Q̄0(1,W )− Q̄(1,W )

]
−
[
Q̄0(0,W )− Q̄(0,W )

]
Under consistent estimation of the outcome regression (i.e. when Q̄(A,W ) = Q̄0(A,W )), this term
is zero and the TMLE for ΨC0(P0) efficient. In this setting, the TMLE for the conditional estimand
will often have a smaller asymptotic variance than the same TMLE for the population estimand:

σ2,P = V ar[DY (Q̄0, g0)(O)] + V ar[DW (Q̄0, g0)(O)]

σ2,C = V ar[DY (Q̄0, g0)(O)]

They will only have the same efficiency bound when there is no variability in the treatment effect
across strata of covariates (i.e. when V ar[Q̄0(1,W )− Q̄0(0,W )−ψP0 ] = 0). In many settings, there
will be effect modification, and focusing on estimation of the conditional parameter will yield more
precision and power.

In practice, there are likely to be deviations between the true outcome regression and the limit
of our estimator. Nonetheless, we can conservatively approximate the influence curve of the TMLE
for the conditional estimand ΨC0(P0) as

DCn(Oi) = DY,n(Oi) =

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄∗n(Ai,Wi)

)
(2)

(Balzer et al., 2015). Thereby, we obtain an asymptotically conservative variance estimator with the
sample variance of the weighted residuals, divided by sample size n. As estimation of the outcome
regression improves, the deviations between the true and estimated means are reduced and we
get closer to approaching the efficiency bound σ2,C . Thereby, in a randomized trial, adjusting
for baseline covariates, predictive of the outcome, can substantially improve power by reducing
variability in the estimator and resulting in a less conservative variance estimator (Balzer et al.,
2015).

4.3 For the Sample Parameter

For a randomized trial, Neyman (1923) proposed estimating the SATE ΨS(PU,X) with the unad-
justed estimator, which is the difference in the average outcomes among the treated units and the
average outcomes among the control units:

Ψn,unadj(Pn) =

∑n
i=1 I(Ai = 1)Yi∑n
i=1 I(Ai = 1)

−
∑n

i=1 I(Ai = 0)Yi∑n
i=1 I(Ai = 0)

In this setting, the difference-in-means estimator will be unbiased for the SATE, conditional on the
vector of counterfactual outcomes Y(a) = {Yi(a) : i = 1, . . . , n, a = 0, 1}. However, its variance
remains unidentifiable as it relies on the correlation of the counterfactual outcomes {Yi(1), Yi(0)}
(Neyman, 1923). Imbens (2004) later generalized this work for an efficient estimator (i.e. a regu-
lar, asymptotically linear estimator, whose influence curve equals the efficient influence curve) in
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an observational setting. In particular, he showed that an efficient estimator for the population
parameter was unbiased for the sample parameter, conditional on the vector of baseline covariates
W and the set of counterfactual outcomes Y(a). Further he expressed the variance of an efficient
estimator of the SATE in terms of the variance of the the same estimator of the PATE minus the
variance of the unit-specific treatment effect across the population. We now extend these results to
the TMLE when the estimator of Q̄0(A,W ) converges to a possibly misspecified limit and suggest
alternate methods for variance estimation.

The TMLE for the population and conditional parameters (ΨC0(P0) and ΨC0(P0)) is also a con-
sistent and asymptotically linear estimator of the SATE:

Ψn(Pn)−ΨS(PU,X) =
1

n

n∑
i=1

DS(Q̄, g0)(Ui, Xi) + oP (1/
√
n)

with influence curve

DS(Q̄, g0)(U,X) = DC(Q̄, g0)(O)−DF (U,X)

DF (U,X) = Y (1)− Y (0)−
[
Q̄0(1,W )− Q̄0(0,W )

]
The proof is given in Appendix A. Recall U = (UW , UA, UY ) denotes the set of background factors
and X = (W,A, Y ) denotes the endogenous factors in our SCM. In words, the influence curve
of the TMLE for the sample parameter DS is given by the influence curve for TMLE of the
conditional parameter DC minus a non-identifiable piece, which captures the deviations between
the unit-specific treatment effect and expected effect within covariate strata:

DF (Ui, Xi) = Yi(1)− Yi(0)−
[
E0(Yi|Ai = 1,Wi)− E0(Yi|Ai = 0,Wi)

]
= Yi(1)− Yi(0)−

[
EU,X,0(Yi(1)|,Wi)− EU,X,0(Yi(0)|Wi)

]
= Yi(1)− Yi(0)− EU,X,0

[
Yi(1)− Yi(0)

∣∣Wi

]
In the last line, the expectation is over the unmeasured factors UY that determine the counterfactual
outcomes.

The standardized estimator of the SATE is asymptotically normal with mean zero and variance

V ar[DS(U,X)] = V ar
[
DC(O)

]
+ V ar

[
DF (U,X)

]
− 2Cov

[
DC(O), DF (U,X)

]
= V ar

[
DC(O)

]
− V ar

[
DF (U,X)

]
The proof is given in Appendix B. Since the variance of the DF component must be greater than or
equal to zero, the asymptotic variance of the TMLE as an estimator of the sample parameter will
be less than or equal to the asymptotic variance of the same estimator of the conditional parameter.
They will only have the same precision when there is no variability in the treatment effect within
strata of covariates W . In many settings, however, there will be heterogeneity, and TMLE for the
SATE will be more precise and powerful.

Along the same lines, we can conservatively approximate the influence curve of the TMLE for
SATE by ignoring the non-identifiable piece DF . Specifically, we obtain a conservative variance
estimator with the sample variance of the estimated DCn component (Eq. 2), divided by sample
size n. This variance estimator is easy to implement as the relevant pieces are known or already
estimated. As a result, this may provide an attractive alternative to the matching estimator of the
variance, proposed by Abadie and Imbens (2002) and discussed in Imbens (2004). We note that
the bootstrap is inappropriate as the parameter changes with each sample.
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4.4 Generalization for Observational Studies

Thus far, we have focused on a randomized trial. In an observational setting, TMLE can be
implemented in an analogous manner. In the first step, we estimate both the outcome regression
Q̄0(A,W ) and the propensity score g0(1|W ). Again, we could use parametric regression or data-
adaptive algorithms. In the targeting step, we run logistic regression of the outcome Y on the
estimated covariate Hn(A,W ) with the logit of the initial estimator Q̄n(A,W ) as offset. We then
plug-in the estimated coefficient εn to obtain the targeted estimates Q̄∗n(1,W ) and Q̄∗n(0,W ). The
targeted estimates are then substituted into the parameter mapping.

In an observational setting, TMLE also exhibits desirable asymptotic properties. TMLE is
double robust: if either the outcome regression Q̄0(A,W ) or the propensity score g0(1|W ) are
consistently estimated, we will have a consistent estimate of the parameter of interest. If both
functions are consistently estimated at a fast enough rate and the positivity assumption holds,
then the TMLE will be asymptotically efficient. As before, the TMLE for the sample parameter
will be at least as precise as the TMLE for the conditional parameter, which will be at least as
precise as the TMLE for the population parameter. Furthermore, if the outcome regression is not
consistently estimated but the propensity score is consistently estimated with maximum likelihood,
then DP(Q̄, g0) provides an asymptotically conservative approximation of the influence curve for
the TMLE of the population estimand ΨP0 (P0) (van der Laan and Robins, 2003). Likewise, under
these conditions, DC(Q̄, g0) provides an asymptotically conservative approximation of the influence
curve for the TMLE of the conditional estimand ΨC0(P0) and thereby SATE. Further details are
given in Appendix C.

5 Simulation Study

We present the following simulation study to (1) further illustrate the differences between the causal
parameters, (2) demonstrate implementation of the TMLE, and (3) understand the impact of the
parameter specification on the estimator’s true variance, on variance estimation and on attained
power. We focus on a randomized trial to illustrate the potential gains in efficiency with adjustment
during the analysis. All simulations were carried out in R v3.1.0 (R Core Team, 2014).

5.1 Data generating process and estimators

Consider the following data generating process for unit i = {1, . . . , n}. First, we generated the
background error UY,i by drawing from a standard normal distribution. Then we generated three
baseline covariates W = (W1,W2,W3) by drawing independently from a standard normal distri-
bution. The exposure Ai was randomized such that the treatment allocation was balanced overall.
Recall Ai is a binary indicator, equaling 1 if the unit is randomized to the treatment and 0 if the
unit is randomized to the control. The outcome Yi was generated as

Yi = expit
[
Ai + 0.5(W1i +W2i +W3i) + UY,i + 1.5Ai(W1i −W2i)−AUY,i)

]
/5

We also generated the counterfactual outcomes Yi(a) by intervening to set Ai = a. For sample
sizes n = {50, 70, 100}, this data generating process was repeated 2,500 times. For each sample, the
SATE was calculated as the average difference in the counterfactual outcomes, and the CATE was
calculated as the average difference in the expected counterfactual outcomes, given the baseline
covariates for the study units. (The conditional expectation EU,X [Yi(a)|Wi] was approximated
by fixing (a,Wi) and averaging the counterfactual outcomes over 75,000 units.) The PATE was
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calculated by averaging the difference in the counterfactual outcomes over a population of 500, 000
units.

We compared the performance of the unadjusted estimator to the TMLE with two methods for
initial estimation of the outcome regression Q̄0(A,W ). Specifically, we estimated Q̄0(A,W ) with
logistic regression, including as main terms the exposure A, the covariate W1 and an interaction
A∗W1. We also estimated Q̄0(A,W ) with Super Learner, an optimal machine-learning approach
(van der Laan et al., 2007). In particular, we used 10-fold cross-validation to create the best
convex combination of algorithm-specific estimates from the following library: logistic regression
with main terms for the exposure A and a single covariate, logistic regression with main terms
for the exposure A, a single covariate and their interaction, as well as stepwise logistic regression
with and without interactions. The unadjusted estimator can be considered as a special case of
the TMLE, where Q̄n(A,W ) = Q̄n(A). Inference was based on the estimated influence curve. We
constructed Wald-type 95% confidence intervals and tested the null hypothesis of no effect.

5.2 Simulation Results

Table 1 gives a summary of the parameter values across 2,500 samples. Recall the true values of
the SATE and CATE depend on the units included in the study. The sample effect ranged from
-1.04% to 6.69%; the conditional effect ranged from -0.12% to 5.46%, while the population effect
was constant at 2.73%. By averaging out the unmeasured factors contributing to the counterfactual
outcomes UY , the CATE was less variable than the SATE. Likewise, by averaging out the measured
and unmeasured factors contributing to the counterfactual outcomes (W,UY ) across the population,
the PATE is less variable than the CATE. As expected, the variability in the SATE and CATE
decrease with increasing sample size.

SATE CATE PATE
min mean max var min mean max var min mean max var

n = 50 -1.04 2.73 5.81 1.03E-2 -0.12 2.74 5.46 7.29E-3 2.73 2.73 2.73 0
n = 70 -0.34 2.71 6.69 7.06E-3 0.29 2.71 5.34 4.94E-3 2.73 2.73 2.73 0
n = 100 0.21 2.72 5.49 4.77E-3 0.46 2.72 5.11 3.53E-3 2.73 2.73 2.73 0

Table 1: Summary of the causal parameters over 2,500 simulations of size n = {50, 70, 100}. All values are in percent.

Table 2 illustrates the performance of the estimators over the 2,500 simulated data sets. Specif-
ically, we give the bias as the average deviation between the point estimate and (sample-specific)
true value, the standard deviation σ as the square root of the variance of estimator relative to its
target, and the average standard error estimate σ̂, based on the influence curve. We also show the
“true” power, which is the proportion of times the false null hypothesis would be rejected if the
estimator’s variance σ2 were known, and the attained power, which is the proportion of times the
false null hypothesis was rejected when the variance was estimated. The 95% confidence interval
coverage is also included.

Since the exposure was randomized, all estimators are unbiased. There was no risk of bias
due to misspecification the regression model for Q̄0(A,W ) (e.g. Moore and van der Laan (2009);
Rosenblum and van der Laan (2010)). As expected, the variance of the estimators decreased and
thereby the “true” power increased with increasing sample size and with adjustment (e.g. Fisher
(1932); Cochran (1957); Cox and McCullagh (1982)). For example, the true power of the unadjusted
estimator for the SATE was 57% with n = 50, 69% with n = 70 and 80% with n = 100. After
adjusting for a single covariate with TMLE, the true power for the SATE increased to 78% with
n = 50, 89% with n = 70, and 96% with n = 100. There were minimal differences in the variance
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and true power of the TMLE using logistic regression for initial estimation of the outcome regression
and TMLE using Super Learner for initial estimation.

For all sample sizes and algorithms, the impact of the target parameter specification on precision
and true power was notable. As predicted by theory, the variance was lowest and thereby true power
highest for the SATE. Consider, for example, the TMLE using logistic regression and a sample of
50 units. The standard deviation σ of this estimator of the population effect was 29% higher
than the standard deviation of this estimator of the conditional effect and 53% higher than the
standard deviation of this estimator of the sample effect. Furthermore, if we knew the variance of
this estimator, then we would have 78% power to detect the sample effect, 71% power to detect
the conditional effect and only 55% power to detect the population effect.

In practice, however, we must estimate the variance. When our target of inference is the SATE
or the CATE, the sample variance of weighted residuals (Eq. 2), divided by sample size n, provides
an asymptotically conservative variance estimator. When our target of inference is the PATE, we
must also account for estimation of the covariate distribution. In the finite sample simulations, the
impact of having a conservative variance estimator on inference for SATE was considerable. In all
settings, the standard deviation was over-estimated: σ̂ > σ. As a result, the attained power was
less than the true power and the confidence interval coverage was conservative (i.e. greater than
the nominal rate of 95%). Likewise, when the CATE was the target of inference, the standard
deviation was conservatively approximated and thereby the attained power was less than the true
power. For both the sample and conditional effects, the TMLE using Super Learner was able to
obtain a more precise fit of Q̄0(A,W ) and thereby a less conservative variance estimator. As a
result, this TMLE was able to achieve the most power. We note that the attained power is the
same for the SATE and CATE, because we used the same point and variance estimator for both
parameters.

Despite the conservative variance estimator, the TMLE for the SATE or CATE achieved higher
power than the TMLE for the PATE at all sample sizes. With 50 units, for example, the attained
power for the TMLE with Super Learner was 66% for the sample/conditional effect and only 57%
for the population effect. Notably, the attained power was the same for the unadjusted estimator
of the 3 parameters. The attained power of the unadjusted estimator did not vary, because the
estimated DW component of influence curve and thereby its variance were zero:

Q̄n(1)− Q̄n(0)−Ψn,unadj(Pn) = 0

where Q̄n(A) denotes the treatment-specific mean. Thus, using the unadjusted estimator sacrificed
any potential gains in attained power by specifying the SATE or the CATE as the target of inference.
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Variability Power CI
Bias σ σ̂ True Att. Cover.

SATE
n = 50 Unadj 1.1E-4 1.3E-2 1.6E-2 0.57 0.41 0.98

TMLE 7.7E-4 8.8E-3 1.2E-2 0.78 0.63 0.99
TMLE+SL 5.3E-4 8.8E-3 1.1E-2 0.78 0.66 0.98

n = 70 Unadj 2.7E-4 1.1E-2 1.4E-2 0.69 0.52 0.99
TMLE 6.4E-4 7.2E-3 1.0E-2 0.89 0.75 0.99
TMLE+SL 4.5E-4 7.2E-3 9.7E-3 0.88 0.78 0.99

n = 100 Unadj 3.5E-5 9.0E-3 1.1E-2 0.80 0.66 0.98
TMLE 2.7E-4 5.9E-3 8.7E-3 0.96 0.87 0.99
TMLE+SL 1.4E-4 6.0E-3 8.2E-3 0.95 0.89 0.99

CATE
n = 50 Unadj 3.3E-5 1.4E-2 1.6E-2 0.51 0.41 0.97

TMLE 6.9E-4 1.1E-2 1.2E-2 0.71 0.63 0.97
TMLE+SL 4.5E-4 1.0E-2 1.1E-2 0.71 0.66 0.95

n = 70 Unadj 2.0E-4 1.2E-2 1.4E-2 0.62 0.52 0.97
TMLE 5.8E-4 8.7E-3 1.0E-2 0.83 0.75 0.97
TMLE+SL 3.9E-4 8.7E-3 9.7E-3 0.82 0.78 0.96

n = 100 Unadj 8.2E-6 9.7E-3 1.1E-2 0.76 0.66 0.97
TMLE 2.4E-4 7.0E-3 8.7E-3 0.93 0.87 0.98
TMLE+SL 1.1E-4 7.1E-3 8.2E-3 0.93 0.89 0.97

PATE
n = 50 Unadj 9.5E-5 1.6E-2 1.6E-2 0.40 0.41 0.94

TMLE 7.5E-4 1.4E-2 1.3E-2 0.55 0.58 0.94
TMLE+SL 5.1E-4 1.4E-2 1.3E-2 0.54 0.57 0.93

n = 70 Unadj -8.1E-6 1.4E-2 1.4E-2 0.52 0.52 0.94
TMLE 3.7E-4 1.1E-2 1.1E-2 0.69 0.70 0.94
TMLE+SL 1.8E-4 1.1E-2 1.1E-2 0.68 0.69 0.94

n = 100 Unadj -1.3E-4 1.1E-2 1.1E-2 0.67 0.66 0.95
TMLE 9.8E-5 9.0E-3 9.2E-3 0.86 0.85 0.95
TMLE+SL -2.8E-5 9.1E-3 9.3E-3 0.84 0.83 0.95

Table 2: Summary of estimator performance over 2,500 simulations. The rows denote the sample sizes n =
{50, 70, 100} and the estimator: unadjusted, TMLE with logistic regression and TMLE with Super Learner
(“TMLE+SL”). Bias is the average deviation between the point estimate and (sample-specific) true value; σ is
the square root of the variance of the estimator, and σ̂ is the average standard error estimate, based on the influence
curve. The true power (“Power True”) is the proportion of times the false null hypothesis would be rejected if the
estimator’s variance σ2 were known, while the attained power (“Power Att.”) is the proportion of times the false
null hypothesis was rejected when estimating the variance. The confidence interval coverage (“CI Cover.”) is the
proportion the 95% confidence intervals that contained the true parameter value.
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6 Discussion

To our knowledge, this is the first paper to propose using TMLE for estimation and inference of
the SATE. Despite lack of identifiability, we proved that the TMLE was an asymptotically linear
estimator of the SATE. If there is heterogeneity in the intervention effect within strata of covariates,
the sample parameter will be estimated with more precision than the conditional parameter. Fur-
thermore, if there is heterogeneity in the intervention effect across strata of covariates, the sample
and conditional parameters will be estimated with more precision than the population parameter.
In practice, we can estimate the variance of the TMLE for the SATE with the sample variance of
the weighted residuals, divided by sample size. This is an intuitive variance estimator and straight-
forward to implement. We also discussed generalizations to an observational setting. The TMLE
will provide at least as much precision and power to detect the impact of a non-randomized expo-
sure on the study units than in the overall population. Our conclusions should also extend to a
trial with adaptive pair-matching (Balzer et al., 2015). Formal study is warranted and an area of
future work, but we hypothesize that a trial targeting the sample effect and implementing adaptive
pair-matching will be more efficient than a trial targeting the sample effect and not implementing
pair-matching.

Finite sample simulations highlighted the differences between the causal parameters and the
impact of the target parameter specification on the estimator’s variance and attained power. We
also compared the unadjusted estimator (i.e. difference-in-means estimator) to the TMLE with
various methods for initial estimation of Q̄0(A,W ). As predicted by theory, all estimators were
unbiased and adjustment lead to greater power. An estimator of the SATE was less variable than
the same estimator of the CATE, which was less variable the same estimator of the PATE. While
the differences in the true power (the proportion of times the false null hypothesis would be rejected
if we knew the estimator’s variance) were substantial, the difference in the attained power were
attenuated due to the conservative variance estimator. Greater differences in the attained power
were seen with a more aggressive fit of conditional mean outcome. As estimation of Q̄0(A,W )
improves, the TMLE becomes a more precise estimator (i.e. smaller true variance) and the variance
estimator becomes less conservative. In small trials (e.g. n ≤ 30) such as early phase clinical trials
or cluster randomized trials, obtaining a precise estimate of Q̄0(A,W ) is likely to be challenging.
In practice, many baseline covariates are predictive of the outcome, but adjusting for too many
covariates can result in over-fitting. Future work will investigate the use of cross-validation to
data-adaptively select the optimal adjustment set in trials with limited sample sizes.

Overall, we believe the SATE is an under-utilized causal parameter. It is simply the intervention
effect for the study units. The SATE avoids assumptions about representative sampling (e.g. a
simple random sample) from some target population. Furthermore, the SATE is responsive to het-
erogeneity in the treatment effect and avoids assumptions that the observed impact is generalizable
to other contexts (Stuart et al., 2011; Hartman et al., 2015). These generalizations can be made
with the formal methods for transportability (Pearl and Bareinboim, 2013) and do not have to be
assumed during the parameter specification. To obtain a point estimate, the implementation of
the TMLE is identical to that of the conditional and population estimands. To obtain conservative
inference, we only need to take the sample variance of the weighted residuals, divided by sample
size. Thereby, estimation and inference for the SATE does not require any extra work and is likely
to give us more power to detect the impact of the exposure on the outcome.
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Appendix A: The TMLE is an asymptotically linear estimator of
the SATE

Consider the statistical parameter corresponding to the population average treatment effect (PATE):

ΨP0 (P0) = E0

[
E0(Y |A = 1,W )− E0(Y |A = 0,W )

]
= E0

[
Q̄0(1,W )− Q̄0(0,W )

]
where Q̄0(A,W ) = E0(Y |A,W ) denotes the conditional expectation of the outcome, given the
exposure and covariates. The TMLE for ΨP0 (P0) is defined by the following substitution estimator:

Ψn(Pn) =
1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
where Pn denotes the empirical distribution, putting mass 1/n on each Oi = (Wi, Ai, Yi) and
Q̄∗n(A,W ) denotes the targeted estimator.

Suppose the exposure mechanism, denoted g0(A|W ) = P0(A|W ), is known as in a randomized
trial. Under the following regularity conditions, the TMLE of ΨP0 (P0) is asymptotically linear
(van der Laan and Rubin, 2006):

Ψn(Pn)−ΨP0 (P0) =
1

n

n∑
i=1

DP(Q̄, g0)(Oi) + oP (1/
√
n)

with influence curve

DP(Q̄, g0)(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
+ Q̄(1,W )− Q̄(0,W )−ΨP0 (P0)

where Q̄(A,W ) denotes the limit of the TMLE Q̄∗n(A,W ). Specifically, we assume the positivity
assumption holds: for some δ > 0, δ < g0(1|W ) < 1 − δ. We also assume that P0

[
DPn (Q̄∗n, g0) −

DP(Q̄, g0)
]2 → 0 in probability and that DPn (Q̄∗n, g0) is in the P0-Donsker class with probability

tending to 1. Here we used notation P0f =
∫
f(o)dP0(0) for some function f .

Theorem 1. Suppose we have n i.i.d. observations of random variable O = (W,A, Y ) ∼ P0,
where W denotes the baseline covariates, A denotes the exposure, and Y denotes the outcome.
Consider the sample average treatment effect (SATE) ΨS(PU,X) = 1

n

∑n
i=1 Yi(1)−Yi(0), where PU,X

denote the joint distribution of the background factors U = (UW , UA, UY ) and exogenous factors
X = (W,A, Y ). Under the above regularity conditions, the TMLE Ψn(Pn) = 1

n

∑n
i=1 Q̄

∗
n(1,Wi) −

Q̄∗n(0,Wi) is an asymptotically linear estimator of the SATE:

Ψn(Pn)−ΨS(PU,X) =
1

n

n∑
i=1

DS(Ui, Xi) + oP (1/
√
n)

with influence curve

DS(U,X) = DC(Q̄, g0)(O)−DF (U,X)

DC(Q̄, g0)(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
−
[
Q̄0(W )− Q̄(W )

]
DF (U,X) = Y (1)− Y (0)−

[
Q̄0(1,W )− Q̄0(0,W )

]
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where Q̄(W ) = Q̄(1,W )− Q̄(0,W ) denotes the difference in the treatment-specific means.

We note that DC is the influence curve of the TMLE for the conditional estimand ΨC0(P0) =
1
n

∑n
i=1 Q̄0(1,Wi)−Q̄0(0,Wi), which corresponds to the conditional average treatment effect (CATE)

under the necessary causal assumptions (Balzer et al., 2015). The remaining non-identifiable piece
DF is difference between the unit-specific effect and the effect within strata of covariates.

Proof. Let Q̄0(W ) = Q̄0(1,W )− Q̄0(0,W ) denote the true difference in treatment-specific means.
We can write the deviation between the TMLE Ψn(Pn) for the population estimand ΨP0 (P0) and
the SATE as

Ψn(Pn)−ΨS(PU,X) = Ψn(Pn)−ΨP0 (P0)−
[
ΨS(PU,X)−ΨP0 (P0)

]
=

1

n

n∑
i=1

DP(Oi)−
[
ΨS(PU,X)−ΨP0 (P0)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

DP(Oi)−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi) + Q̄0(Wi)−ΨP0 (P0)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄(Ai,Wi)

)
+ Q̄(Wi)−ΨP0 (P0)

−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi) + Q̄0(Wi)−ΨP0 (P0)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄(Ai,Wi)

)
−
[
Q̄0(Wi)− Q̄(Wi)

]
−
[

1

n

n∑
i=1

Yi(1)− Yi(0)− Q̄0(Wi)

]
+ oP (1/

√
n)

=
1

n

n∑
i=1

DC(Oi)−DF (Ui, Xi) + oP (1/
√
n)

where the influence curve of the TMLE for the conditional estimand ΨC0(P0) is

DC(Q̄, g0)(O) =

(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
−
[
Q̄0(W )− Q̄(W )

]
and where

DF (U,X) = Y (1)− Y (0)− Q̄0(1,W )− Q̄0(0,W )

Thus, we have shown the TMLE is an asymptotically linear estimator of the SATE:

√
n

[
Ψn(Pn)−ΨS(PU,X)

]
=

1

n

n∑
i=1

DS(Ui, Xi) + oP (1/
√
n)

with influence curve
DS(U,X) = DC(O)−DF (U,X)
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Appendix B: Variance and variance estimation for the TMLE of
the SATE

Theorem 2. The standardized TMLE for the SATE is asymptotically normal:

√
n

[
Ψn(Pn)−ΨS(PU,X)

]
D−→ N(0, σ2,S)

with σ2,S = V ar[DC ] + V ar[DF ]− 2Cov[DC , DF ]

= V ar[DC ]− V ar[DF ]

Proof. The covariance term is

Cov[DC , DF ] = EU,X,0

[
DC ×DF ]

= EU,X,0

[{(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
−
(
Q̄0(W )− Q̄(W )

)}
×
{
Y (1)− Y (0)− Q̄0(W )

}]
= EU,X,0

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
×
{
Y (1)− Y (0)− Q̄0(W )

}]
− EU,X,0

[{
Q̄0(W )− Q̄(W )

}
×
{
Y (1)− Y (0)− Q̄0(W )

}]
Under the randomization assumption, the DF component has conditional mean zero, given the
baseline covariates W :

EU,X,0

[
Y (1)− Y (0)− Q̄0(W )

∣∣W ] = EU,X,0[Y (1)|W ]− EU,X,0[Y (0)|W ]− Q̄0(W )

= E0(Y |A = 1,W )− E0(Y |A = 0,W )− Q̄0(W ) = 0

Therefore, the second term is zero.

For the first term, we have

EU,X,0

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
= EU,X,0

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄(A,W ) + Q̄0(A,W )− Q̄0(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
= EU,X,0

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Y − Q̄0(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
+ EU,X,0

[(
I(A = 1)

g0(1|W )
− I(A = 0)

g0(0|W )

)(
Q̄0(A,W )− Q̄(A,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
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It follow that this equals:

EU,X,0

[
I(A = 1)

g0(1|W )

(
Y (1)− Q̄0(1,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
− EU,X,0

[
I(A = 0)

g0(0|W )

(
Y (0)− Q̄0(0,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
+ EU,X,0

[
I(A = 1)

g0(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
− EU,X,0

[
I(A = 0)

g0(0|W )

(
Q̄0(0,W )− Q̄(0,W )

)
×
[
Y (1)− Y (0)− Q̄0(W )

]]
Under the randomization assumption, we have

E0

[
I(A = a)

g0(a|W )

∣∣∣∣Y (1), Y (0),W

]
= 1

Therefore, the sum of first two terms reduce to the variance of the DF component:

E0

[[
Y (1)− Y (0)− Q̄0(W )

]
×
[
Y (1)− Y (0)− Q̄0(W )

]]
= E0

[[
Y (1)− Y (0)− Q̄0(W )

]2]
The sum of last two terms equals zero, using that the conditional mean of DF component, given W
equals zero. Therefore, we have that the covariance term equals the variance of the non-identifiable
component DF :

2Cov[DC , DF ] = 2V ar[DF ]

Thus, the asymptotic variance of the standardized estimator for the SATE is

σ2,S = V ar[DC ]− V ar[DF ]

The asymptotic variance σ2,S is always less than or equal to V ar[DC ]. We can estimate the
upper bound as

σ2,Sn = V arn[DCn]

where V arn is the sample variance and DCn is the (conservative) estimate of the influence curve for
the TMLE for the conditional parameter:

DCn(Oi) =

(
I(Ai = 1)

g0(1|Wi)
− I(Ai = 0)

g0(0|Wi)

)(
Yi − Q̄∗n(Ai,Wi)

)
Appendix C:Generalization to allow for estimation of the exposure
mechanism

Suppose our target of inference is the population estimand ΨP0 (P0) and the exposure mechanism
is consistently estimated with maximum likelihood: gn(A|W ). Then the TMLE is asymptotically
linear with influence curve given by the influence curve at the possibly misspecified limit Q̄(A,W )
minus its projection on the tangent space Tg of the model for g0(A|W ) (van der Laan and Robins,
2003):

DP,gn(Q̄, g0) = DP(Q̄, g0)−
∏[

DP(Q̄, g0)
∣∣Tg]
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This projection is a function of (A,W ) with conditional mean zero, given W . Analogously, when
we target the conditional estimand ΨC0(P0), the influence curve of the TMLE is

DC,gn(Q̄, g0) = DC(Q̄, g0)−
∏[

DC(Q̄, g0)
∣∣Tg]

and when we target the SATE ΨS(PU,X), the influence curve of the TMLE is

DS,gn(Q̄, g0) = DC,gn(Q̄, g0)−DF

The proof is analogous to the above and thus omitted.
The standardized estimator of the SATE then is asymptotically normal with mean 0 and vari-

ance given by the variance of influence curve:

σ2,S,gn = V ar[DC,gn ] + V ar[DF ]− 2Cov[DC,gn , DF ]

The covariance of the projection
∏[

DC(Q̄, g0)
∣∣Tg] and DF is zero. (If we take the expectation

given (A,W ), then the projection term is constant and the DF term is zero.) Thus, the asymptotic
variance of standardized estimator (when the exposure mechanism is estimated according to a
correctly specified model) is

σ2,S,gn = V ar[DC,gn ]− V ar[DF ]

We will to have a conservative variance estimator by ignoring the projection term and the non-
identifiable piece DF .
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