67 research outputs found

    Role of AMP-activated protein kinase in regulating hypoxic survival and proliferation of mesenchymal stem cells

    Get PDF
    Aims Mesenchymal stem cells (MSCs) are widely used for cell therapy, particularly for the treatment of ischaemic heart disease. Mechanisms underlying control of their metabolism and proliferation capacity, critical elements for their survival and differentiation, have not been fully characterized. AMP-activated protein kinase (AMPK) is a key regulator known to metabolically protect cardiomyocytes against ischaemic injuries and, more generally, to inhibit cell proliferation. We hypothesized that AMPK plays a role in control of MSC metabolism and proliferation. Methods and results MSCs isolated from murine bone marrow exclusively expressed the AMPKα1 catalytic subunit. In contrast to cardiomyocytes, a chronic exposure of MSCs to hypoxia failed to induce cell death despite the absence of AMPK activation. This hypoxic tolerance was the consequence of a preference of MSC towards glycolytic metabolism independently of oxygen availability and AMPK signalling. On the other hand, A-769662, a well-characterized AMPK activator, was able to induce a robust and sustained AMPK activation. We showed that A-769662-induced AMPK activation inhibited MSC proliferation. Proliferation was not arrested in MSCs derived from AMPKα1-knockout mice, providing genetic evidence that AMPK is essential for this process. Among AMPK downstream targets proposed to regulate cell proliferation, we showed that neither the p70 ribosomal S6 protein kinase/eukaryotic elongation factor 2-dependent protein synthesis pathway nor p21 was involved, whereas p27 expression was increased by A-769662. Silencing p27 expression partially prevented the A-769662-dependent inhibition of MSC proliferation. Conclusion MSCs resist hypoxia independently of AMPK whereas chronic AMPK activation inhibits MSC proliferation, p27 being involved in this regulatio

    Early brainstem [18F]THK5351 uptake is linked to cortical hyper-excitability in healthy aging

    Get PDF
    BACKGROUND: Neuronal hyper-excitability characterizes the early stages of Alzheimer's disease (AD). In animals, early misfolded tau and amyloid-beta (Aβ) protein accumulation, both central to AD neuropathology, promote cortical excitability and neuronal network dysfunction. In healthy humans, misfolded tau and Aβ aggregates are first detected, respectively, in the brainstem and frontomedial and temporobasal cortices, decades prior to the onset of AD cognitive symptoms. Whether cortical excitability is related to early brainstem tau, and its associated neuroinflammation, and cortical Aβ aggregations remains unknown. METHODS: We probed frontal cortex excitability, using transcranial magnetic stimulation combined with electroencephalography, in a sample of 64 healthy late middle-aged individuals (50-69 y; 45 women). We assessed whole-brain [18F]THK5351 positron emission tomography (PET) uptake as a proxy measure of tau/neuroinflammation, and whole-brain Aβ burden with [18F]Flutemetamol or [18F]Florbetapir radiotracers. RESULTS: We find that higher [18F]THK5351 uptake in a brainstem monoaminergic compartment is associated with increased cortical excitability (r = .29, p = .02). By contrast, [18F]THK5351 PET signal in the hippocampal formation, although strongly correlated with brainstem signal in whole-brain voxel-based quantification analyses (pFWE-corrected < .001), was not significantly associated with cortical excitability (r = .14, p = .25). Importantly, no significant association was found between early Aβ cortical deposits and cortical excitability (r = -.20, p = .11). CONCLUSION: These findings reveal potential brain substrates for increased cortical excitability in preclinical AD and may constitute functional in vivo correlates of early brainstem tau accumulation and neuroinflammation in humans. TRIAL REGISTRATION: EudraCT 2016-001436-35. FUNDING: F.R.S.-FNRS Belgium, Wallonie-Bruxelles International, ULiège, Fondation Simone et Pierre Clerdent, European Regional Development Fund

    Calibration and performance of the ISO Long-Wavelength Spectrometer

    Get PDF
    The wavelength and flux calibration, and the in-orbit performance of the Infrared Space Observatory Long-Wavelength Spectrometer (LWS) are described. The LWS calibration is mostly complete and the instrument's performance in orbit is largely as expected before launch. The effects of ionising radiation on the detectors, and the techniques used to minimise them are outlined. The overall sensitivity figures achieved in practice are summarised. The standard processing of LWS data is described

    Metabolic Changes in the Spinal Cord After Brachial Plexus Root Re-implantation

    Get PDF
    To investigate metabolic changes within the spinal cord using proton magnetic resonance spectroscopy ((1)H-MRS) and determine their relationship with clinical function in patients with complete brachial plexus avulsion who underwent reimplantation of the ventral roots

    Effects of light on cognitive brain responses depend on circadian phase and sleep homeostasis.

    Get PDF
    Light is a powerful modulator of cognition through its long-term effects on circadian rhythmicity and direct effects on brain function as identified by neuroimaging. How the direct impact of light on brain function varies with wavelength of light, circadian phase, and sleep homeostasis, and how this differs between individuals, is a largely unexplored area. Using functional MRI, we compared the effects of 1 minute of low-intensity blue (473 nm) and green light (527 nm) exposures on brain responses to an auditory working memory task while varying circadian phase and status of the sleep homeostat. Data were collected in 27 subjects genotyped for the PER3 VNTR (12 PER3(5/5) and 15 PER3(4/4) ) in whom it was previously shown that the brain responses to this task, when conducted in darkness, depend on circadian phase, sleep homeostasis, and genotype. In the morning after sleep, blue light, relative to green light, increased brain responses primarily in the ventrolateral and dorsolateral prefrontal cortex and in the intraparietal sulcus, but only in PER3(4/4) individuals. By contrast, in the morning after sleep loss, blue light increased brain responses in a left thalamofrontoparietal circuit to a larger extent than green light, and only so in PER3(5/5) individuals. In the evening wake maintenance zone following a normal waking day, no differential effect of 1 minute of blue versus green light was observed in either genotype. Comparison of the current results with the findings observed in darkness indicates that light acts as an activating agent particularly under those circumstances in which and in those individuals in whom brain function is jeopardized by an adverse circadian phase and high homeostatic sleep pressure

    Evaluating T2* bias impact and correction strategies in quantitative proton density mapping

    No full text
    PURPOSE: Quantitative magnetic resonance imaging (qMRI) helps reveal the biophysical properties governing MRI contrast. By eliminating instrumental biases and other contrast mechanisms influencing the signal amplitude, quantitative parameter maps can be derived and ultimately serve as in vivo biomarkers 1 . Biases in proton density (PD) map estimation include radio-frequency transmit (B 1 + ) and receive (B 1 - ) fields and T 2 * weighting 2-5 . We focus on the T 2 * bias in multi-echo fast low angle shot (FLASH) protocols, where the T 2 * signal dependence is often neglected 5,6 . Although often pointed out as a potential limitation especially in high iron content areas 5,7,8 , the extent and severity of this bias and the evaluation of correction strategies have not yet been fully reported. RESULTS: Simulated FLASH multiparameter mapping datasets with increasing noise levels were analysed with the hMRI toolbox and various processing strategies for PD estimation. Without T 2 * bias correction and with calibration to PD=69% in the WM, PD values were overestimated in the cortex (since T 2 * GM >T 2 * WM ) and strongly underestimated in high iron content areas (globus pallidus, red nuclei, substantia nigra). CONCLUSIONS: T 2 * bias correction is necessary to increase the sensitivity and specificity of qMRI in these areas. All methods taking T 2 * weighting bias into account are effective. However, method (2) shows lower SNR (relies on a single echo), while methods (1) (with T 2 * correction) and (3) perform similarly
    corecore