205 research outputs found

    The Association of a Rare Variant of -93, -53 Promoter Gene Polymorphisms of Lipoprotein Lipase Gene with Obesity and Insulin Resistance

    Get PDF
    Objectives: Obesity increases the risk of numerous chronic diseases. Obesity is classified clinically using body mass index (BMI), waist-to-hip ratio, and body fat percentage. The lipoprotein lipase (LPL) gene has been linked to lipoprotein metabolism and obesity. We performed a case-control study to determine the association between LPL gene polymorphisms and obesity-associated phenotypes such as insulin resistance (IR). Methods: We examined the different LPL gene variants for association in 642 individuals segregated by BMI and IR. Genotyping of the LPL gene -93 and -53 promoter gene polymorphisms were analyzed using polymerase chain reaction-restriction fragment length polymorphism. Results: A substantial association was observed for -93 gene polymorphism of the LPL gene with obesity, while -53 promoter gene polymorphism showed association with IR. Conclusions: We found a significant association between -93 and -53 promoter gene polymorphisms of the LPL gene with obesity and associated phenotypes in the studied population

    SMN1 dosage analysis in spinal muscular atrophy from India

    Get PDF
    BACKGROUND: Spinal muscular atrophy (SMA) represents the second most common fatal autosomal recessive disorder after cystic fibrosis. Due to the high carrier frequency, the burden of this genetic disorder is very heavy in developing countries like India. As there is no cure or effective treatment, genetic counseling becomes very important in disease management. SMN1 dosage analysis results can be utilized for identifying carriers before offering prenatal diagnosis in the context of genetic counseling. METHODS: In the present study we analyzed the carrier status of parents and sibs of proven SMA patients. In addition, SMN1 copy number was determined in suspected SMA patients and parents of children with a clinical diagnosis of SMA. RESULTS: wenty nine DNA samples were analyzed by quantitative PCR to determine the number of SMN1 gene copies present, and 17 of these were found to have one SMN1 gene copy. The parents of confirmed SMA patients were found to be obligate carriers of the disease. Dosage analysis was useful in ruling out clinical suspicion of SMA in four patients. In a family with history of a deceased floppy infant and two abortions, both parents were found to be carriers of SMA and prenatal diagnosis could be offered in future pregnancies. CONCLUSION: SMN1 copy number analysis is an important parameter for identification of couples at risk for having a child affected with SMA and reduces unwarranted prenatal diagnosis for SMA. The dosage analysis is also useful for the counseling of clinically suspected SMA with a negative diagnostic SMA test

    Ocular expression and distribution of products of the POAG-associated chromosome 9p21 gene region

    Get PDF
    It has recently been shown that there are highly significant associations for common single nucleotide polymorphisms (SNPs) near the CDKN2B-AS1 gene region at the 9p21 locus with primary open angle glaucoma (POAG), a leading cause of irreversible blindness. This gene region houses the CDKN2B/p15INK4B, CDKN2A/p16INK4A and p14ARF (rat equivalent, p19ARF) tumour suppressor genes and is adjacent to the S-methyl-5′-thioadenosine phosphorylase (MTAP) gene. In order to understand the ocular function of these genes and, therefore, how they may be involved in the pathogenesis of POAG, we studied the distribution patterns of each of their products within human and rat ocular tissues. MTAP mRNA was detected in the rat retina and optic nerve and its protein product was localised to the corneal epithelium, trabecular meshwork and retinal glial cells in both human and rat eyes. There was a very low level of p16INK4A mRNA present within the rat retina and slightly more in the optic nerve, although no protein product could be detected in either rat or human eyes with any of the antibodies tested. P19ARF mRNA was likewise only present at very low levels in rat retina and slightly higher levels in the optic nerve. However, no unambiguous evidence was found to indicate expression of specific P19ARF/p14ARF proteins in either rat or human eyes, respectively. In contrast, p15INK4B mRNA was detected in much higher amounts in both retina and optic nerve compared with the other genes under analysis. Moreover, p15INK4B protein was clearly localised to the retinal inner nuclear and ganglion cell layers and the corneal epithelium and trabecular meshwork in rat and human eyes. The presented data provide the basis for future studies that can explore the roles that these gene products may play in the pathogenesis of glaucoma and other models of optic nerve damage.Glyn Chidlow, John P. M. Wood, Shiwani Sharma, David P. Dimasi, Kathryn P. Burdon, Robert J. Casson, Jamie E. Crai

    Potential Role of Aromatase over Estrogen Receptor Gene Polymorphisms in Migraine Susceptibility: A Case Control Study from North India

    Get PDF
    BACKGROUND: The present study was undertaken to find out the role of estrogen pathway related gene polymorphisms in susceptibility to migraine in Northern Indian population. Aromatase, CYP19A1 (rs10046 and rs4646); estrogen receptors, ESR1 (rs2234693, rs1801132, rs2228480 and rs9340799) and ESR2 (rs1271572 and rs1256049) polymorphisms were selected for the present study. METHODOLOGY/PRINCIPAL FINDINGS: The patients were recruited in two cohorts - primary (207) and replicative (127) along with 200 healthy controls and genotyped for various polymorphisms. Logistic regression analysis was applied for statistical analyses. The results were validated in the replicative cohort and pooled by meta analysis using Fisher's and Mantel-Haenszel test. Furthermore, Benjamini - Hochberg false discovery rate test was used to correct for multiple comparisons. CYP19A1 rs10046 and CYP19A1 rs4646 polymorphisms were found to confer risk and protective effect, respectively. Out of four ESR1 polymorphisms, only rs2234693 variant allele was significantly associated in migraine with aura. No significant associations were observed for ESR2 polymorphisms. Significant haplotypes were identified for CYP19A1 and ESR1 polymorphisms. Gene- gene interactions of genotypes as well as haplotypes were observed for CYP19A1- ESR1 showing both risk and protective combinations. CONCLUSION: We strongly suggest CYP19A1 polymorphisms to be the major contributing factors in migraine susceptibility instead of genetic variants of estrogen receptors

    Therapeutic Dosing of Acenocoumarol: Proposal of a Population Specific Pharmacogenetic Dosing Algorithm and Its Validation in North Indians

    Get PDF
    Objectives: To develop a population specific pharmacogenetic acenocoumarol dosing algorithm for north Indian patients and show its efficiency in dosage prediction. Methods: Multiple and linear stepwise regression analyses were used to include age, sex, height, weight, body surface area, smoking status, VKORC1-1639 G.A, CYP4F2 1347 G.A, CYP2C9*2,*3 and GGCX 12970 C.G polymorphisms as variables to generate dosing algorithms. The new dosing models were compared with already reported algorithms and also with the clinical data for various performance measures. Odds ratios for association of genotypes with drug sensitive and resistant groups were calculated. Results: The pharmacogenetic dosing algorithm generated by multiple regression analysis explains 41.4 % (p-value,0.001) of dosage variation. Validation of the new algorithm showed its predictive ability to be better than the already established algorithms based on similar variables. Its validity in our population is reflected by increased sensitivity, specificity, accuracy and decreased rates of over- and under- estimation in comparison to clinical data. The VKORC1-1639 G.A polymorphism was found to be strongly associated with acenocoumarol sensitivity according to recessive model. Conclusions: We have proposed an efficient north India specific pharmacogenetic acenocoumarol dosing algorithm whic

    Gallbladder Cancer Predisposition: A Multigenic Approach to DNA-Repair, Apoptotic and Inflammatory Pathway Genes

    Get PDF
    Gallbladder cancer (GBC) is a multifactorial disease with complex interplay between multiple genetic variants. We performed Classification and Regression Tree Analysis (CART) and Grade of Membership (GoM) analysis to identify combinations of alleles among the DNA repair, inflammatory and apoptotic pathway genetic variants in modifying the risk for GBC. We analyzed 16 polymorphisms in 8 genes involved in DNA repair, apoptotic and inflammatory pathways to find out combinations of genetic variants contributing to GBC risk. The genes included in the study were XRCC1, OGG1, ERCC2, MSH2, CASP8, TLR2, TLR4 and PTGS2. Single locus analysis by logistic regression showed association of MSH2 IVS1+9G>C (rs2303426), ERCC2 Asp312Asn (rs1799793), OGG1 Ser326Cys (rs1052133), OGG1 IVS4-15C>G (rs2072668), CASP8 -652 6N ins/del (rs3834129), PTGS2 -1195G>A (rs689466), PTGS2 -765G>C (rs20417), TLR4 Ex4+936C>T (rs4986791) and TLR2 –196 to –174del polymorphisms with GBC risk. The CART analysis revealed OGG1 Ser326Cys, and OGG1 IVS4-15C>G polymorphisms as the best polymorphic signature for discriminating between cases and controls. In the GoM analysis, the data was categorized into six sets representing risk for GBC with respect to the investigated polymorphisms. Sets I, II and III described low intrinsic risk (controls) characterized by multiple protective alleles while sets IV, V and VI represented high intrinsic risk groups (GBC cases) characterized by the presence of multiple risk alleles. The CART and GoM analyses also showed the importance of PTGS2 -1195G>A polymorphism in susceptibility to GBC risk. In conclusion, the present multigenic approach can be used to define individual risk profiles for gallbladder cancer in North Indian population

    Association of CETP TaqI and APOE polymorphisms with type II diabetes mellitus in North Indians: a case control study

    Get PDF
    BACKGROUND: Genetic variants of proteins involved in lipid metabolism may play an important role in determining the susceptibility for complications associated with type II diabetes mellitus (T2DM). Goal of the present study was to determine the association of cholesteryl ester transfer protein TaqI B, D442G, and APOE Hha I polymorphisms with T2DM and its complications. METHODS: Study subjects were 136 patients and 264 healthy controls. All polymorphisms were detected using PCR-RFLP and statistical analysis done with χ(2 )test and ANOVA. RESULTS: Although CETP TaqI B polymorphism was not associated with the T2DM, yet B1B2 genotype was significantly (p = 0.028) associated with high risk of hypertension in diabetic patients (OR = 3.068, 95% CI 1.183–7.958). In North Indians D442G variation in CETP gene was found to be absent. Frequency of APOE HhaI polymorphism was also not different between patients and controls. In diabetic patients having neuropathy and retinopathy significantly different levels of total-cholesterol [(p = 0.001) and (p = 0.029) respectively] and LDL-cholesterol [(p = 0.001) and (p = 0.001) respectively] were observed when compared to patients with T2DM only. However, lipid levels did not show any correlation with the CETP TaqI B and APOE Hha I genetic polymorphisms. CONCLUSION: CETP TaqI B and APOE HhaI polymorphism may not be associated with type II diabetes mellitus in North Indian population, however CETP TaqI B polymorphism may be associated with hypertension along with T2DM

    Genome Wide Analysis of Drug-Induced Torsades de Pointes: Lack of Common Variants with Large Effect Sizes

    Get PDF
    Marked prolongation of the QT interval on the electrocardiogram associated with the polymorphic ventricular tachycardia Torsades de Pointes is a serious adverse event during treatment with antiarrhythmic drugs and other culprit medications, and is a common cause for drug relabeling and withdrawal. Although clinical risk factors have been identified, the syndrome remains unpredictable in an individual patient. Here we used genome-wide association analysis to search for common predisposing genetic variants. Cases of drug-induced Torsades de Pointes (diTdP), treatment tolerant controls, and general population controls were ascertained across multiple sites using common definitions, and genotyped on the Illumina 610k or 1M-Duo BeadChips. Principal Components Analysis was used to select 216 Northwestern European diTdP cases and 771 ancestry-matched controls, including treatment-tolerant and general population subjects. With these sample sizes, there is 80% power to detect a variant at genome-wide significance with minor allele frequency of 10% and conferring an odds ratio of ≥2.7. Tests of association were carried out for each single nucleotide polymorphism (SNP) by logistic regression adjusting for gender and population structure. No SNP reached genome wide-significance; the variant with the lowest P value was rs2276314, a non-synonymous coding variant in C18orf21 (p  =  3×10(-7), odds ratio = 2, 95% confidence intervals: 1.5-2.6). The haplotype formed by rs2276314 and a second SNP, rs767531, was significantly more frequent in controls than cases (p  =  3×10(-9)). Expanding the number of controls and a gene-based analysis did not yield significant associations. This study argues that common genomic variants do not contribute importantly to risk for drug-induced Torsades de Pointes across multiple drugs

    Molecular basis of X-linked non-specific mental retardation

    No full text
    549-557Mental retardation (MR) is a common disorder, affecting 1- 3% of the total population. This condition results from failure to develop cognitive abilities and intelligence level appropriate for the age group. Mental retardation is basically a clinically as well as etiologically heterogeneous type of condition and both genetic and non-genetic factors have been found to be involved. There are more than 1000 entries in Online Mendelian Inheritance in Man (OMIM) database under the name of mental retardation. In recent years 15 genes for X-linked non-specific mental retardation have been identified which provide important clues regarding molecular and cellular processes involved in signal transduction cascade in central nervous system. Recent advancements in identification and characterization of X- linked non-specific mental retardation genes have been discussed in this review. Understanding of the molecular pathways of disease causing genes would be helpful in developing effective therapeutic approaches for mental retardation
    corecore