1,617 research outputs found

    Kinetic Limit for Wave Propagation in a Random Medium

    Full text link
    We study crystal dynamics in the harmonic approximation. The atomic masses are weakly disordered, in the sense that their deviation from uniformity is of order epsilon^(1/2). The dispersion relation is assumed to be a Morse function and to suppress crossed recollisions. We then prove that in the limit epsilon to 0 the disorder averaged Wigner function on the kinetic scale, time and space of order epsilon^(-1), is governed by a linear Boltzmann equation.Comment: 71 pages, 3 figure

    Inverse Diffusion Theory of Photoacoustics

    Full text link
    This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photo-acoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well-studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schroedinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n2n internal data for well-chosen boundary conditions are available, where nn is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics (CGO) solutions.Comment: 24 page

    Enrollment Decision-Making by Students in Forestry and Related Natural Resource Degree Programmes Globally

    Get PDF
    A survey of 396 undergraduate and graduate students from 51 countries on 5 continents currently enrolled in Forestry or Related Natural Resource (FRNR) degree programmes was conducted of attendees to the International Union of Forest Research Organizations\u27 (IUFRO) conference in Salt Lake City, Utah, 2014. These perspectives come from some of the most active students in their respective fields. We explored the motivating reasons for enrolling in their current FRNR programme, and conversely why they may have been hesitant to do so. Results indicate that enjoyment of nature was the most important factor on average driving the decision to enroll, closely followed by job satisfaction, concern for the environment, enjoyment of outdoor recreation, being outdoors, and an interest in subject material. Hesitancy factors included earning potential, availability of funding/scholarships, and politically contentious issues. A number of significant differences were found across demographic categories. Of particular note was the greater hesitancy on the part of women and people of color to enroll in FRNR degree programmes compared to their white male counterparts. We discuss the limitations of our study arising from its international scope and imbalance of responses among countries and regions. HIGHLIGHTS Forestry and Related Natural Resources (FRNR) students from 51 countries report that enjoyment of nature was the most important factor driving their decision to enroll. Decision factors that caused hesitation included earning potential, availability of funding, and political issues. Importance factors differed significantly between genders, race/ethnicity, academic standing, world region, and social background (i.e. urban vs rural). Women and people of color from multiple world regions had a greater hesitancy to enroll in an FRNR programme than their white male counterparts. Implications for recruitment and retention include the need for continual diversity and inclusion efforts and a balance between personal preferences and employability

    Radiation- and Phonon-Bottleneck-Induced Tunneling in the Fe8 Single-Molecule Magnet

    Full text link
    We measure magnetization changes in a single crystal of the single-molecule magnet Fe8 when exposed to intense, short (<20 μ\mus) pulses of microwave radiation resonant with the m = 10 to 9 transition. We find that radiation induces a phonon bottleneck in the system with a time scale of ~5 μ\mus. The phonon bottleneck, in turn, drives the spin dynamics, allowing observation of thermally assisted resonant tunneling between spin states at the 100-ns time scale. Detailed numerical simulations quantitatively reproduce the data and yield a spin-phonon relaxation time of T1 ~ 40 ns.Comment: 6 RevTeX pages, including 4 EPS figures, version accepted for publicatio

    The role of inhibitory feedback for information processing in thalamocortical circuits

    Get PDF
    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurence of spindle waves. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson {\sl et al}. on the thalamocortical loop. In a first step, we use a conductance-based neuron model to reproduce the experiment computationally. In a second step, we model the same system by using an extended Hindmarsh-Rose model, and compare the results with the conductance-based model. In the framework of both models, we investigate the influence of inhibitory feedback on the information transfer in a typical thalamocortical oscillator. We find that our extended Hindmarsh-Rose neuron model, which is computationally less costly and thus siutable for large-scale simulations, reproduces the experiment better than the conductance-based model. Further, in agreement with the experiment of Le Masson {\sl et al}., inhibitory feedback leads to stable self-sustained oscillations which mask the incoming input, and thereby reduce the information transfer significantly.Comment: 16 pages, 15eps figures included. To appear in Physical Review

    Reelin Mobilizes a VAMP7-Dependent Synaptic Vesicle Pool and Selectively Augments Spontaneous Neurotransmission

    Get PDF
    SummaryReelin is a glycoprotein that is critical for proper layering of neocortex during development as well as dynamic regulation of glutamatergic postsynaptic signaling in mature synapses. Here, we show that Reelin also acts presynaptically, resulting in robust rapid enhancement of spontaneous neurotransmitter release without affecting properties of evoked neurotransmission. This effect of Reelin requires a modest but significant increase in presynaptic Ca2+ initiated via ApoER2 signaling. The specificity of Reelin action on spontaneous neurotransmitter release is encoded at the level of vesicular SNARE machinery as it requires VAMP7 and SNAP-25 but not synaptobrevin2, VAMP4, or vti1a. These results uncover a presynaptic regulatory pathway that utilizes the heterogeneity of synaptic vesicle-associated SNAREs and selectively augments action potential-independent neurotransmission

    Carbon nanotubes adhesion and nanomechanical behavior from peeling force spectroscopy

    Get PDF
    Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM to investigate the mechanical behavior of a SWNT touching a surface. By simultaneously recording static and dynamic properties of SWNT, we show that the contact corresponds to a peeling geometry, and extract quantities such as adhesion energy per unit length, curvature and bending rigidity of the nanotube. A complete picture of the local shape of the SWNT and its mechanical behavior is provided

    The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics

    Full text link
    For low density gases the validity of the Boltzmann transport equation is well established. The central object is the one-particle distribution function, ff, which in the Boltzmann-Grad limit satisfies the Boltzmann equation. Grad and, much refined, Cercignani argue for the existence of this limit on the basis of the BBGKY hierarchy for hard spheres. At least for a short kinetic time span, the argument can be made mathematically precise following the seminal work of Lanford. In this article a corresponding programme is undertaken for weakly nonlinear, both discrete and continuum, wave equations. Our working example is the harmonic lattice with a weakly nonquadratic on-site potential. We argue that the role of the Boltzmann ff-function is taken over by the Wigner function, which is a very convenient device to filter the slow degrees of freedom. The Wigner function, so to speak, labels locally the covariances of dynamically almost stationary measures. One route to the phonon Boltzmann equation is a Gaussian decoupling, which is based on the fact that the purely harmonic dynamics has very good mixing properties. As a further approach the expansion in terms of Feynman diagrams is outlined. Both methods are extended to the quantized version of the weakly nonlinear wave equation. The resulting phonon Boltzmann equation has been hardly studied on a rigorous level. As one novel contribution we establish that the spatially homogeneous stationary solutions are precisely the thermal Wigner functions. For three phonon processes such a result requires extra conditions on the dispersion law. We also outline the reasoning leading to Fourier's law for heat conduction.Comment: special issue on "Kinetic Theory", Journal of Statistical Physics, improved versio

    The affordance of compassion for animals: a filmic exploration of industrial linear rhythms

    Get PDF
    Compassion is an emotion that could be useful for improving the lives of animals within the intensive and factory farming system (IFFS). Rhythms that exist within this system play a role in making compassion difficult to realize, which formulates the research question: How do the rhythms of the IFFS shape the affordance of compassion for animals? Drawing on a cultural mode of analysis informed by Henri Lefebvre’s work on rhythms, this paper explored the rhythms of three films that focus on the treatment of animals in this system: Meat; Our Daily Bread and Never Let Me Go. Industrial linear rhythms seem to compromise the compassion offered to animals in the IFFS by manipulating the cyclical rhythms of animals and animalized bodies from birth, through life and at death. Compassion for animals and animalized bodies in the IFFS, this paper concludes, is often provided in a piecemeal and localized manner
    corecore