This paper analyzes the reconstruction of diffusion and absorption parameters
in an elliptic equation from knowledge of internal data. In the application of
photo-acoustics, the internal data are the amount of thermal energy deposited
by high frequency radiation propagating inside a domain of interest. These data
are obtained by solving an inverse wave equation, which is well-studied in the
literature. We show that knowledge of two internal data based on well-chosen
boundary conditions uniquely determines two constitutive parameters in
diffusion and Schroedinger equations. Stability of the reconstruction is
guaranteed under additional geometric constraints of strict convexity. No
geometric constraints are necessary when 2n internal data for well-chosen
boundary conditions are available, where n is spatial dimension. The set of
well-chosen boundary conditions is characterized in terms of appropriate
complex geometrical optics (CGO) solutions.Comment: 24 page