research

Inverse Diffusion Theory of Photoacoustics

Abstract

This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photo-acoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well-studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schroedinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n2n internal data for well-chosen boundary conditions are available, where nn is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics (CGO) solutions.Comment: 24 page

    Similar works