34,294 research outputs found

    Thermodynamics of localized magnetic moments in a Dirac conductor

    Full text link
    We show that the magnetic susceptibility of a dilute ensemble of magnetic impurities in a conductor with a relativistic electronic spectrum is non-analytic in the inverse tempertature at 1/T01/T\to 0. We derive a general theory of this effect and construct the high-temperature expansion for the disorder averaged susceptibility to any order, convergent at all tempertaures down to a possible ordering transition. When applied to Ising impurities on a surface of a topological insulator, the proposed general theory agrees with Monte Carlo simulations, and it allows us to find the critical temperature of the ferromagnetic phase transition.Comment: 5 pages, 1 figure, 2 tables, RevTe

    Identities for hyperelliptic P-functions of genus one, two and three in covariant form

    Full text link
    We give a covariant treatment of the quadratic differential identities satisfied by the P-functions on the Jacobian of smooth hyperelliptic curves of genera 1, 2 and 3

    Deriving bases for Abelian functions

    Full text link
    We present a new method to explicitly define Abelian functions associated with algebraic curves, for the purpose of finding bases for the relevant vector spaces of such functions. We demonstrate the procedure with the functions associated with a trigonal curve of genus four. The main motivation for the construction of such bases is that it allows systematic methods for the derivation of the addition formulae and differential equations satisfied by the functions. We present a new 3-term 2-variable addition formulae and a complete set of differential equations to generalise the classic Weierstrass identities for the case of the trigonal curve of genus four.Comment: 35page

    An ultra-bright atom laser

    Full text link
    We present a novel, ultra-bright atom-laser and ultra-cold thermal atom beam. Using rf-radiation we strongly couple the magnetic hyperfine levels of 87Rb atoms in a magnetically trapped Bose-Einstein condensate. At low rf-frequencies gravity opens a small hole in the trapping potenital and a well collimated, extremely bright atom laser emerges from just below the condensate. As opposed to traditional atom lasers based on weak coupling, this technique allows us to outcouple atoms at an arbitrarily large rate. We demonstrate an increase in flux per atom in the BEC by a factor of sixteen compared to the brightest quasi-continuous atom laser. Furthermore, we produce by two orders of magnitude the coldest thermal atom beam to date (200 nK).Comment: 20 pages, 9 figures, supplementary material online at http://www.bec.g

    A purely reflective large wide-field telescope

    Full text link
    Two versions of a fast, purely reflective Paul-Baker type telescope are discussed, each with an 8.4-m aperture, 3 deg diameter flat field and f/1.25 focal ratio. The first version is based on a common, even asphere type of surface with zero conic constant. The primary and tertiary mirrors are 6th order aspheres, while the secondary mirror is an 8th order asphere (referred to here for brevity, as the 6/8/6 configuration). The D_80 diameter of a star image varies from 0''.18 on the optical axis up to 0''.27 at the edge of the field (9.3-13.5 mcm). The second version of the telescope is based on a polysag surface type which uses a polynomial expansion in the sag z, r^2 = 2R_0z - (1+b)z^2 + a_3 z^3 + a_4 z^4 + ... + a_N z^N, instead of the common form of an aspheric surface. This approach results in somewhat better images, with D_80 ranging from 0''.16 to 0''.23, using a lower-order 3/4/3 combination of powers for the mirror surfaces. An additional example with 3.5-m aperture, 3.5 deg diameter flat field, and f/1.25 focal ratio featuring near-diffraction-limited image quality is also presented.Comment: 14 pages, 6 figures; new examples adde

    An Introduction

    Get PDF

    Early- and late-migrating cranial neural crest cell populations have equivalent developmental potential in vivo

    Get PDF
    We present the first in vivo study of the long-term fate and potential of early-migrating and late-migrating mesencephalic neural crest cell populations, by performing isochronic and heterochronic quail-to-chick grafts. Both early- and late-migrating populations form melanocytes, neurons, glia, cartilage and bone in isochronic, isotopic chimeras, showing that neither population is lineage-restricted. The early-migrating population distributes both dorsally and ventrally during normal development, while the late-migrating population is confined dorsally and forms much less cartilage and bone. When the late-migrating population is substituted heterochronically for the early-migrating population, it contributes extensively to ventral derivatives such as jaw cartilage and bone. Conversely, when the early-migrating population is substituted heterochronically for the late-migrating population, it no longer contributes to the jaw skeleton and only forms dorsal derivatives. When the late-migrating population is grafted into a late-stage host whose neural crest had previously been ablated, it migrates ventrally into the jaws. Thus, the dorsal fate restriction of the late-migrating mesencephalic neural crest cell population in normal development is due to the presence of earlier-migrating neural crest cells, rather than to any change in the environment or to any intrinsic difference in migratory ability or potential between early- and late-migrating cell populations. These results highlight the plasticity of the neural crest and show that its fate is determined primarily by the environment

    Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions

    Full text link
    Explicit function forms of hyperelliptic solutions of Korteweg-de Vries (KdV) and \break Kadomtsev-Petviashvili (KP) equations were constructed for a given curve y2=f(x)y^2 = f(x) whose genus is three. This study was based upon the fact that about one hundred years ago (Acta Math. (1903) {\bf{27}}, 135-156), H. F. Baker essentially derived KdV hierarchy and KP equation by using bilinear differential operator D{\bold{D}}, identities of Pfaffians, symmetric functions, hyperelliptic σ\sigma-function and \wp-functions; μν=μνlogσ\wp_{\mu \nu} = -\partial_\mu \partial_\nu \log \sigma =(DμDνσσ)/2σ2= - ({\bold{D}}_\mu {\bold{D}}_\nu \sigma \sigma)/2\sigma^2. The connection between his theory and the modern soliton theory was also discussed.Comment: AMS-Tex, 12 page

    Some addition formulae for Abelian functions for elliptic and hyperelliptic curves of cyclotomic type

    Full text link
    We discuss a family of multi-term addition formulae for Weierstrass functions on specialized curves of genus one and two with many automorphisms. In the genus one case we find new addition formulae for the equianharmonic and lemniscate cases, and in genus two we find some new addition formulae for a number of curves, including the Burnside curve.Comment: 19 pages. We have extended the Introduction, corrected some typos and tidied up some proofs, and inserted extra material on genus 3 curve

    Ground state energy of the modified Nambu-Goto string

    Get PDF
    We calculate, using zeta function regularization method, semiclassical energy of the Nambu-Goto string supplemented with the boundary, Gauss-Bonnet term in the action and discuss the tachyonic ground state problem.Comment: 10 pages, LaTeX, 2 figure
    corecore