15 research outputs found

    Posterior photoacoustic/ultrasound imaging of the periodontal pocket with a compact intraoral transducer

    No full text
    Periodontitis is a public issue and imaging periodontal pocket is important to evaluate periodontitis. Regular linear transducers have limitations in imaging the posterior teeth due to their geometry restrictions. Here we characterized a transducer that can image the posterior teeth including assessment of periodontal pockets via a combination of photoacoustic and ultrasound imaging. Unlike conventional transducer design, this device has a toothbrush-shaped form factor with a side-view transducer to image molars (total size: 1 Ã—1.9 cm). A laser diode was integrated as the light source to reduce the cost and size and facilitates clinical transition. The in vivo imaging of a molar of a periodontal patient demonstrated that the transducer could image in the posterior area of gum in vivo; the value determined by imaging was within 7 % of the value measured clinically

    Synchronization of RF Data in Ultrasound Open Platforms (UOPs) for High-Accuracy and High-Resolution Photoacoustic Tomography Using the Scissors Programming Method.

    No full text
    Synchronization is important for photoacoustic (PA) tomography, but some fixed delays between the data acquisition (DAQ) and the light pulse are a common problem degrading imaging quality. Here, we present a simple yet versatile method named Scissors to help synchronize ultrasound open platforms (UOPs) for PA imaging. Scissors is a programed function that can cut or add a fixed delay to radio frequency (RF) data and, thus, synchronize it before reconstruction. Scissors applies the programmable metric of UOPs and has several advantages. It is compatible with many setups regardless of the synchronization methods, light sources, transducers, and delays. The synchronization is adjustable in steps reciprocal to the UOPs sampling rate (20-ns step with a 50-MHz sampling rate). Scissors works in real-time PA imaging, and no extra hardware is needed. We programed Scissors in Vantage UOP (Verasonics, Inc., Kirkland, WA, USA) and then imaged two 30- [Formula: see text] nichrome wires with a 20.2-MHz central frequency transducer. The PA image was severely distorted by an 828-ns delay; over 90% delay was caused by our Q -switch laser. The axial and lateral resolutions are 112 and [Formula: see text], respectively, after using Scissors. We imaged a human finger in vivo, and the imaging quality is tremendously improved after solving the 828-ns delay by using Scissors

    Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer

    No full text
    (1) Background: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca2+-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) Methods: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca2+]i). Flow cytometry was used to analyze cell cycle; (3) Results: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca2+]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) Conclusions: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC

    Deep learning assisted sparse array ultrasound imaging.

    No full text
    This study aims to restore grating lobe artifacts and improve the image resolution of sparse array ultrasonography via a deep learning predictive model. A deep learning assisted sparse array was developed using only 64 or 16 channels out of the 128 channels in which the pitch is two or eight times the original array. The deep learning assisted sparse array imaging system was demonstrated on ex vivo porcine teeth. 64- and 16-channel sparse array images were used as the input and corresponding 128-channel dense array images were used as the ground truth. The structural similarity index measure, mean squared error, and peak signal-to-noise ratio of predicted images improved significantly (p < 0.0001). The resolution of predicted images presented close values to ground truth images (0.18 mm and 0.15 mm versus 0.15 mm). The gingival thickness measurement showed a high level of agreement between the predicted sparse array images and the ground truth images, as indicated with a bias of -0.01 mm and 0.02 mm for the 64- and 16-channel predicted images, respectively, and a Pearson's r = 0.99 (p < 0.0001) for both. The gingival thickness bias measured by deep learning assisted sparse array imaging and clinical probing needle was found to be <0.05 mm. Additionally, the deep learning model showed capability of generalization. To conclude, the deep learning assisted sparse array can reconstruct high-resolution ultrasound image using only 16 channels of 128 channels. The deep learning model performed generalization capability for the 64-channel array, while the 16-channel array generalization would require further optimization

    Activation of AMPK Attenuated Cardiac Fibrosis by Inhibiting CDK2 via p21/p27 and miR-29 Family Pathways in Rats

    No full text
    Cardiac fibrosis is pathological damage associated with nearly all forms of heart disease. AMP-activated protein kinase (AMPK) is an evolutionary conserved energy-sensing enzyme. Emerging evidences indicate that AMPK plays an important role in cardiac fibrosis and cell proliferation. However, less is known about the detailed mechanism of AMPK activation on cardiac fibrosis. In this study, we found the AMPK activation improved the impaired cardiac function of cardiac fibrosis rats and decreased interstitial fibrosis. Further results indicated AMPK activation promoted p21 and p27 and inhibited CDK2 and cyclin E protein expressions both in vivo and in vitro. Moreover, AMPK activation repressed downstream transcription factor hepatocyte nuclear factor 4 alpha (HNF-4α) expression and decreased the binding of HNF-4α to TGF-β1 promoters, which eventually resulted in TGF-β1 downregulation and miR-29 family upregulation. Furthermore, miR-29, in turn, inhibited the progression of cardiac fibrosis through suppressing its target CDK2. Taken together, activation of AMPK, on the one hand, upregulated p21 and p27 expression, further inhibited CDK2 and cyclin E complex, and finally suppressed the progression of cardiac fibrosis, and, on the other hand, repressed HNF-4α expression, further downregulated the activity of TGF-β1 promoter, promoted miR-29 expression, and finally prevented the development of cardiac fibrosis. Keywords: AMPK, cell cyclin, HNF-4α, TGF-β1, miR-29 famil

    Functionalized Porous Aromatic Framework for Efficient Uranium Adsorption from Aqueous Solutions

    No full text
    We demonstrate the successful functionalization of a porous aromatic framework for uranium extraction from water as exemplified by grafting PAF-1 with the uranyl chelating amidoxime group. The resultant amidoxime-functionalized PAF-1 (PAF-1-CH<sub>2</sub>AO) exhibits a high uranium uptake capacity of over 300 mg g<sup>–1</sup> and effectively reduces the uranyl concentration from 4.1 ppm to less than 1.0 ppb in aqueous solutions within 90 min, well below the acceptable limit of 30 ppb set by the US Environmental Protection Agency. The local coordination environment of uranium in PAF-1-CH<sub>2</sub>AO is revealed by X-ray absorption fine structure spectroscopic studies, which suggest the cooperative binding between UO<sub>2</sub><sup>2+</sup> and adjacent amidoxime species

    Two Metal–Organic Frameworks Constructed from One-Dimensional Cobalt(II) Ferrimagnetic Chains with Alternating Antiferromagnetic/Ferromagnetic and AF/AF/FM Interaction: Synthesis, Structures, and Magnetic Properties

    No full text
    Here, we report two three-dimensional metal–organic frameworks of formula [Co<sub>2</sub>(4-ptz)<sub>2</sub>(bpp)­(N<sub>3</sub>)<sub>2</sub>]<sub>n</sub> (<b>1</b>) and [Co<sub>3</sub>(OH)<sub>2</sub>(bdt)<sub>2</sub>(bpp)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub> (<b>2</b>), which were synthesized by hydrothermal reaction from the respective tetrazole ligand (5-(4-pyridyl)­tetrazole (4-H-ptz) for <b>1</b> and 5,5′-(1,4-phenylene)­bis­(1-<i>H</i>-tetrazole) (H<sub>2</sub>bdt) for <b>2</b>), long and flexible pyridyl-containing ligand 1,3-bi­(4-pyridyl)­propane (bpp), NaN<sub>3</sub>, and CoCl<sub>2</sub>. Both <b>1</b> and <b>2</b> consist of well-isolated one-dimensional cobalt­(II) alternating chains further linked by the bpp and/or the tetrazole ligand, while their chain structures are totally different. The chains of <b>1</b> are formed by Co<sup>2+</sup> ions bridged by single μ-EE-N<sub>3</sub> and triple (μ-EO-N<sub>3</sub>)­(μ-tetrazole)<sub>2</sub> alternately, whereas the Co<sup>2+</sup> ions are bridged by μ<sub>3</sub>–OH to form Co<sub>3</sub>(OH)<sub>2</sub> chains in compound <b>2</b>. Magnetic measurements demonstrate that compound <b>1</b> contains an alternating antiferromagnetic (AF)/ferromagnetic (FM) ferrimagnetic chain, while compound <b>2</b> exhibits the coexistence of spin canting, slow magnetic dynamics, and finite-size effect, with alternating AF/AF/FM ferrimagnetic chains

    Photoacoustic imaging of posterior periodontal pocket using a commercial hockey-stick transducer.

    No full text
    SIGNIFICANCE: Photoacoustic imaging has shown advantages over the periodontal probing method in measuring the periodontal probing depth, but the large size of conventional photoacoustic transducers prevents imaging of the more posterior teeth. AIM: Our aim is to develop a photoacoustic imaging system to image the more posterior periodontal pocket. APPROACH: We report a clinical hockey-stick-style transducer integrated with fibers for periodontal photoacoustic imaging. Cuttlefish ink labeled the periodontal pocket as the photoacoustic contrast agent. RESULTS: We characterized the imaging system and then measured the pocket depth of 35 swine teeth. Three raters evaluated the performance of the hockey-stick transducer. The measurements between the Williams probing (gold standard) and the photoacoustic methods were blinded but highly correlated. We showed a bias of ∼0.3  mm for the imaging-based technique versus Williams probing. The minimum inter-reliability was over 0.60 for three different raters of varying experience, suggesting that this approach to measure the periodontal pocket is reproducible. Finally, we imaged three pre-molars of a human subject. We could access more upper and posterior teeth than conventional linear transducers. CONCLUSIONS: The unique angle shape of the hockey-stick transducer allows it to image more posterior teeth than regular linear transducers. This study demonstrated the ability of a hockey-stick transducer to measure the periodontal pocket via photoacoustic imaging
    corecore