21 research outputs found

    Protein carbonylation during natural leaf senescence in winter wheat, as probed by fluorescein-5-thiosemicarbazide

    No full text
    Leaf senescence is characterised by a massive degradation of proteins in order to recycle nitrogen to other parts of the plant, such as younger leaves or developing grain/seed. Protein degradation during leaf senescence is a highly regulated process and it is suggested that proteins to be degraded are marked by an oxidative modification (carbonylation) that makes them more susceptible to proteolysis. However, there is as yet no evidence of an increase in protein carbonylation level during natural leaf senescence. The aim of our study was thus to monitor protein carbonylation level during the process of natural senescence in the flag leaf of field-grown winter wheat plants. For this purpose, we adapted a fluorescence-based method using fluorescein-5-thiosemicarbazide (FTC) as a probe for detecting protein carbonyl derivatives. As used for the first time on plant material, this method allowed the detection of both quantitative and qualitative modifications in protein carbonyl levels during the last stages of wheat flag leaf development. The method described herein represents a convenient, sensitive and reproducible alternative to the commonly used 2,4-dinitrophenylhydrazine (DNPH)-based method. In addition, our analysis revealed changes in protein carbonylation level during leaf development that were associated with qualitative changes in protein abundance and carbonylation profiles. In the senescing flag leaf, protein carbonylation increased concomitantly with a stimulation of endoproteolytic activity and a decrease in protein content, which supports the suggested relationship between protein oxidation and proteolysis during natural leaf senescenc

    The impact of water-rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case)

    No full text
    This study aims to constrain the factors controlling the calcium isotopic compositions in surface waters, especially the respective role of vegetation and water-rock interactions on Ca isotope fractionation in a continental forested ecosystem. The approach is to follow changes in space and time of the isotopic composition and concentration of Ca along its pathway through the hydro-geochemical reservoirs from atmospheric deposits to the outlet of the watershed via throughfalls, percolating soil solutions and springs. The study is focused on the Strengbach catchment, a small forested watershed located in the northeast of France in the Vosges mountains. The δ44/40Ca values of springs, brooks and stream waters from the catchment are comparable to those of continental rivers and fluctuate between 0.17 and 0.87‰. Soil solutions, however, are significantly depleted in lighter isotopes (δ44/40Ca: 1.00-1.47‰), whereas vegetation is strongly enriched (δ44/40Ca: -0.48‰ to +0.19‰). These results highlight that vegetation is a major factor controlling the calcium isotopic composition of soil solutions, with depletion in "light" calcium in the soil solutions from deeper parts of the soil compartments due to preferential 40Ca uptake by the plants rootsystem. However, mass balance calculations require the contribution of an additional Ca flux into the soil solutions most probably associated with water-rock interactions. The stream waters are marked by a seasonal variation of their δ44/40Ca, with low δ44/40Ca in winter and high δ44/40Ca in spring, summer and autumn. For some springs, nourishing the streamlet, a decrease of the δ44/40Ca value is observed when the discharge of the spring increases, with, in addition, a clear covariation between the δ44/40Ca and corresponding H4SiO4 concentrations: high δ44/40Ca values and low H4SiO4 concentrations at high discharge; low δ44/40Ca values and high H4SiO4 concentrations at low discharge. These data imply that during dry periods and low water flow rate the source waters carry a Ca isotopic signature from alteration of soil minerals, whereas during wet periods and high flow rates admixture of significant quantities of 40Ca depleted waters (vegetation induced signal) from uppermost soil horizons controls the isotopic composition of the source waters. This study clearly emphasizes the potential of Ca isotopes as tracers of biogeochemical processes at the water-rock-vegetation interface in a small forested catchment
    corecore