38 research outputs found

    Rotational level structure of sodium isotopes inside the "island of inversion"

    Get PDF
    The neutron-rich nuclei 33,34,35Na were studied via in-beam γ-ray spectroscopy following nucleon removal reactions from a 36Mg secondary beam at ~220 MeV/u. Excited states of 34,35Na are reported for the first time. A third transition was observed for 33Na in addition to the known 7/2+ 1 → 5/2+ 1 → 3/2+ g.s. cascade and is suggested to be the 9/2+ 1 → 7/2+ 1 transition. Similarly, a 7/2+ 1 → 5/2+ 1 → 3/2+ g.s. cascade is proposed for the decay pattern observed for 35Na. The transition energy ratios are close to expectation values for K = 3/2 rotational bands in the strong coupling limit. Comparisons to large-scale shell model calculations in the sd-p f model space support the spin-parity assignments. © The Author(s) 2014.published_or_final_versio

    Structure of 136Sn and the Z = 50 magicity

    Get PDF
    The first 2+ excited state in the neutron-rich tin isotope 136Sn has been identified at 682(13) keV by measuring γ -rays in coincidence with the one proton removal channel from 137Sb. This value is higher than those known for heavier even-even N = 86 isotones, indicating the Z = 50 shell closure. It compares well to the first 2+ excited state of the lighter tin isotope 134Sn, which may suggest that the seniority scheme also holds for 136Sn. Our result confirms the trend of lower 2+ excitation energies of even-even tin isotopes beyond N = 82 compared to the known values in between the two doubly magic nuclei 100Sn and 132Sn. © The Author(s) 2014.published_or_final_versio

    Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    Full text link
    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba

    In‐Operando Lithium‐Ion Transport Tracking in an All‐Solid‐State Battery

    No full text
    An all-solid-state battery is a secondary battery that is charged and discharged by the transport of lithium ions between positive and negative electrodes. To fully realize the significant benefits of this battery technology, for example, higher energy densities, faster charging times, and safer operation, it is essential to understand how lithium ions are transported and distributed in the battery during operation. However, as the third lightest element, methods for quantitatively analyzing lithium during operation of an all-solid-state device are limited such that real-time tracking of lithium transport has not yet been demonstrated. Here, the authors report that the transport of lithium ions in an all-solid-state battery is quantitatively tracked in near real time by utilizing a high-intensity thermal neutron source and lithium-6 as a tracer in a thermal neutron-induced nuclear reaction. Furthermore, the authors show that the lithium-ion migration mechanism and pathway through the solid electrolyte can be determined by in-operando tracking. From these results, the authors suggest that the development of all-solid-state batteries has entered a phase where further advances can be carried out while understanding the transport of lithium ions in the batteries.peerReviewe

    Spectroscopy of ¹⁷C via one-neutron knockout reaction

    Get PDF
    21st International Conference on Few-Body Problems in Physics, Chicago, IL, USA, May 18-22, 2015.A spectroscopic study of ¹⁷C was performed via the one-neutron knockout reaction of ¹⁸C on a carbon target at RIKEN-RIBF. Three unbound states at excitation energies of 2.66(2), 3.16(5), and 3.97(3) MeV (preliminary) were observed. The energies are compared with shell-model calculations and existing measurements to deduce their spin-parities. From the comparison, the states at 2.66(2) and 3.97(3) MeV are suggested to be 1/2⁻ and 3/2⁻, respectively. From its decay property, the state at 3.16(5) MeV is indicated to be 9/2⁺

    Study of ¹⁹C by One-Neutron Knockout

    Get PDF
    21st International Conference on Few-Body Problems in Physics, Chicago, IL, USA, May 18-22, 2015.The spectroscopic structure of ¹⁹C, a prominent one-neutron halo nucleus, has been studied with a ²⁰C secondary beam at 290 MeV/nucleon and a carbon target. Neutron-unbound states populated by the one-neutron knockout reaction were investigated by means of the invariant mass method. The preliminary relative energy spectrum and parallel momentum distribution of the knockout residue, ¹⁹C∗, were reconstructed from the measured four momenta of the¹⁸C fragment, neutron, and beam. Three resonances were observed in the spectrum, which correspond to the states at Ex = 0.62(9), 1.42(10), and 2.89(10) MeV. The parallel momentum distributions for the 0.62-MeV and 2.89-MeV states suggest spin-parity assignments of 5/2⁺ and 1/2⁻, respectively. The 1.42-MeV state is in line with the reported 5/22⁺ state

    Investigating the strength of the N = 34 subshell closure in 54Ca

    No full text
    Excited states in the exotic N = 34 isotope 54Ca have been measured for the first time via in-beam γ-ray spectroscopy with proton-knockout reactions from 55Sc and 56Ti radioactive beams on a Be reaction target at the Radioactive Isotope Beam Factory, Japan. A strong candidate for the transition from the first 2+ state to the 0+ ground state has been identified, in addition to several other weaker transitions. The structure of the N = 33 isotope 53Ca has also been investigated from the same data. Preliminary γ-ray energy spectra for 54Ca and 53Ca will be presented and the significance of the N = 34 subshell closure will be examined. Predictions of several shell-model interactions performed in the fp model space will be discussed in light of the new results.link_to_subscribed_fulltex
    corecore