6 research outputs found

    Genetically Confirmed Spinal Muscular Atrophy Type 3 With Epilepsy In A Malay Patient, A Case Report

    Get PDF
    Spinal Muscular Atrophy (SMA) is an autosomal recessive disease affecting the anterior horn cells of the spinal cord. The diagnosis is usually based on the clinical presentation with or without muscle biopsy and the molecular detection of mutation in the SMNI gene. There have been a few reported cases of SMA with central nervous system involvement, but these were without genetic diagnoses. We report a Malay girl with genetically confirmed SMA complicated by epilepsy. She first presented with motor weakness at the age of 17 months and recurrent seizures a month later. The molecular genetic analysis of her SMN gene showed homozygous deletion of exon 7 and 8 of the SMN1 gene. The seizure responded well to carbamazepine. To the best of our knowledge, this is the first case of genetically comfirmed Malay SMA patient with an association with epilepsy

    Mapping human genetic diversity in Asia

    Get PDF
    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations

    Harmonizing the interpretation of genetic variants across the world: the Malaysian experience.

    Get PDF
    BACKGROUND: Databases for gene variants are very useful for sharing genetic data and to facilitate the understanding of the genetic basis of diseases. This report summarises the issues surrounding the development of the Malaysian Human Variome Project Country Node. The focus is on human germline variants. Somatic variants, mitochondrial variants and other types of genetic variation have corresponding databases which are not covered here, as they have specific issues that do not necessarily apply to germline variations. RESULTS: The ethical, legal, social issues, intellectual property, ownership of the data, information technology implementation, and efforts to improve the standards and systems used in data sharing are discussed. CONCLUSION: An overarching framework such as provided by the Human Variome Project to co-ordinate activities is invaluable. Country Nodes, such as MyHVP, enable human gene variation associated with human diseases to be collected, stored and shared by all disciplines (clinicians, molecular biologists, pathologists, bioinformaticians) for a consistent interpretation of genetic variants locally and across the world
    corecore