231 research outputs found
Water reuse in Africa: challenges and opportunities
Water reuseWastewater irrigationWastewater managementUrban agricultureUrbanisationFood securityPopulation growthWater supplySanitationParticipatory managementStakeholders
Hybrid Galerkin numerical modelling of elastodynamics and compressible Navier–Stokes couplings: applications to seismo-gravito acoustic waves
We introduce a hybrid Galerkin modelling tool for the nonlinear acoustic and gravity wave propagation in planetary atmospheres coupled through topography to a solid medium. We rely on a 2-D spectral-element technique to model linear visco-elastic solid media and couple it to a discontinuous Galerkin method for the atmosphere modelled by the fully nonlinear Navier–Stokes equations. Significant benefits of such a method are, first, its versatility because it handles both acoustic and gravity waves in the same simulation, second, it enables one to observe nonlinear effects as convection or wave-breaking and, finally, it allows one to study the impact of ground-atmosphere coupling for waves propagating from seismic sources. Simulations are performed for 2-D isothermal atmosphere models with complex wind and viscosity profiles. We validate the computations by comparing them to finite-difference solutions, already validated in a previous paper. Specific benchmark validation cases are considered for both acoustic and gravity waves subject to viscosity variations, wind duct and nonlinear wave breaking. We apply this tool to study acoustic and gravity waves generated by a strong seismic source and its nonlinear breaking in the upper atmosphere
RÉACTION DE PRODUCTION DE PIONS PRÈS DU SEUIL
La distribution angulaire de la section efficace différentielle de la réaction 40Ca(p, π+)41Ca (état fondamental) a été mesurée. L'étude de la dépendance en énergie de la production de pions près du seuil a été faite à transfert de moment constant. La section efficace décroît d'un facteur 7 pour des énergies de protons variant de 154 à 149 MeV (Eπ varie de 17,4 à 12,4 MeV). L'interprétation des résultats est faite dans le cadre d'un mécanisme à un nucléon
Linear systems with adiabatic fluctuations
We consider a dynamical system subjected to weak but adiabatically slow
fluctuations of external origin. Based on the ``adiabatic following''
approximation we carry out an expansion in \alpha/|\mu|, where \alpha is the
strength of fluctuations and 1/|\mu| refers to the time scale of evolution of
the unperturbed system to obtain a linear differential equation for the average
solution. The theory is applied to the problems of a damped harmonic oscillator
and diffusion in a turbulent fluid. The result is the realization of
`renormalized' diffusion constant or damping constant for the respective
problems. The applicability of the method has been critically analyzed.Comment: Plain Latex, no figure, 21 page
Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts
The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission
Theory of Adiabatic fluctuations : third-order noise
We consider the response of a dynamical system driven by external adiabatic
fluctuations. Based on the `adiabatic following approximation' we have made a
systematic separation of time-scales to carry out an expansion in , where is the strength of fluctuations and is the
damping rate. We show that probability distribution functions obey the
differential equations of motion which contain third order terms (beyond the
usual Fokker-Planck terms) leading to non-Gaussian noise. The problem of
adiabatic fluctuations in velocity space which is the counterpart of Brownian
motion for fast fluctuations, has been solved exactly. The characteristic
function and the associated probability distribution function are shown to be
of stable form. The linear dissipation leads to a steady state which is stable
and the variances and higher moments are shown to be finite.Comment: Plain Latex, no figures, 28 pages; to appear in J. Phys.
Determination of Matter Surface Distribution of Neutron-rich Nuclei
We demonstrate that the matter density distribution in the surface region is
determined well by the use of the relatively low-intensity beams that become
available at the upcoming radioactive beam facilities. Following the method
used in the analyses of electron scattering, we examine how well the density
distribution is determined in a model-independent way by generating pseudo data
and by carefully applying statistical and systematic error analyses. We also
study how the determination becomes deteriorated in the central region of the
density, as the quality of data decreases. Determination of the density
distributions of neutron-rich nuclei is performed by fixing parameters in the
basis functions to the neighboring stable nuclei. The procedure allows that the
knowledge of the density distributions of stable nuclei assists to strengthen
the determination of their unstable isotopes.Comment: 41 pages, latex, 27 figure
- …