37 research outputs found

    Pressure-temperature evolution of primordial solar system solids during impact-induced compaction

    Get PDF
    Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution

    Primary carbonatite melt from deeply subducted oceanic crust

    Get PDF
    Partial melting in the Earth's mantle plays an important part in generating the geochemical and isotopic diversity observed in volcanic rocks at the surface. Identifying the composition of these primary melts in the mantle is crucial for establishing links between mantle geochemical 'reservoirs' and fundamental geodynamic processes. Mineral inclusions in natural diamonds have provided a unique window into such deep mantle processes. Here we provide experimental and geochemical evidence that silicate mineral inclusions in diamonds from Juina, Brazil, crystallized from primary and evolved carbonatite melts in the mantle transition zone and deep upper mantle. The incompatible trace element abundances calculated for a melt coexisting with a calcium-titanium-silicate perovskite inclusion indicate deep melting of carbonated oceanic crust, probably at transition-zone depths. Further to perovskite, calcic-majorite garnet inclusions record crystallization in the deep upper mantle from an evolved melt that closely resembles estimates of primitive carbonatite on the basis of volcanic rocks. Small-degree melts of subducted crust can be viewed as agents of chemical mass-transfer in the upper mantle and transition zone, leaving a chemical imprint of ocean crust that can possibly endure for billions of years.4 page(s

    COSPAR Sample Safety Assessment Framework (SSAF).

    Get PDF
    The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders

    Thermodynamics of mixing in diopside-jadeite, CaMgSi2O6-NaAlSi2O6, solid solution from staticlattice energy calculations

    Get PDF
    Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have beenperformed for a set of 800 different structures in a 2 2 4 supercell of C2/c diopside with compositionsbetween diopside and jadeite, and with different states of order of the exchangeable Na/Ca and Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the range of 273?2,023 K and to calculate a temperature?composition phase diagram. The simulations predict the order?disorder transition in omphacite at1,150 20C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433?440, 1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1?M1 nearest-neighbor distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral83:419?433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600C

    Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging

    No full text
    A three-dimensional (3D) variant of scanning micro X-ray fluorescence (XRF) is described and evaluated at the ID 18F instrument of the European Synchrotron Radiation Facility (ESRF). The method is based on confocal excitation/detection using a polycapillary half-lens in front of the energy-dispersive detector. The experimental arrangement represents a significant generalization of regular two-dimensional (2D) scanning micro-XRF and employs a detector half-lens whose focus coincides with that of the focused incoming beam. The detection volume defined by the intersection of the exciting beam and the energy-dependent acceptance of the polycapillary optics is 100350 mum(3). Minimum detection limits are sub-ppm, and sensitivities are comparable with regular scanning XRF. Next to the reduction of in-sample single/multiple scattering, the setup provides the possibility of sample depth scans with an energy-dependent resolution of 10-35mum in the energy range of 3-23 keV and the possibility of performing 3D-XRF analysis by simple XYZ linear scanning. This provides a suitable alternative to X-ray fluorescence tomography. The method is illustrated with results of the analysis of solid inclusions in diamond and fluid inclusions in quartz
    corecore