15 research outputs found

    The genomic tool-kit of the truffle Tuber melanosporum programmed cell death

    Get PDF
    A survey of the truffle Tuber melanosporum genome has shown the presence of 67 programmed cell death (PCD)-related genes. The 67 genes are all expressed during fruit body (FB) development of T. melanosporum development; their expression has been detected by DNA microarrays and qPCR. A set of 14 PCD-related genes have been chosen, those with the highest identities to the homologs of other species, for a deeper investigation. That PCD occurs during T melanosporum development has been demonstrated by the TUNEL reaction and transmission electron microscopy. The findings of this work, in addition to the discovery of PCD-related genes in the T. melanosporum genome and their expression during the differentiation and development of the FB, would suggest that one of the PCD subroutines, maybe autophagy, is involved in the FB ripening, i.e., sporogenesis

    Design and methodology of the screening for CKD among older patients across Europe (SCOPE) study: A multicenter cohort observational study

    Get PDF
    Background: Decline of renal function is common in older persons and the prevalence of chronic kidney disease (CKD) is rising with ageing. CKD affects different outcomes relevant to older persons, additionally to morbidity and mortality which makes CKD a relevant health burden in this population. Still, accurate laboratory measurement of kidney function is under debate, since current creatinine-based equations have a certain degree of inaccuracy when used in the older population. The aims of the study are as follows: to assess kidney function in a cohort of 75+ older persons using existing methodologies for CKD screening; to investigate existing and innovative biomarkers of CKD in this cohort, and to align

    LES TESTS DE DIAGNOSTIC RAPIDE (REVOLUTION DANS LA CONSOMMATION D'ANTIBIOTIQUES DANS L'ANGINE)

    No full text
    PARIS-BIUM (751062103) / SudocCentre Technique Livre Ens. Sup. (774682301) / SudocSudocFranceF

    Transcriptional analysis of tyrosinase gene expression during Bufo bufo development

    No full text
    Tyrosinase (EC.1.14.18.1.) is a widespread enzyme, in the phylogenetic scale, that produces melanin, from bacteria to man, by using as substrates monophenols, o-diphenols and molecular oxygen. In this work we have confirmed and demonstrated that during Bufo bufo development tyrosinase activity and gene expression first occur at developmental stages 17–18 (tail bud-muscular response) as detected by a spectrophotometric assay and qRT-PCR. As expected, also during B. bufo development tyrosinase gene is expressed after the late gastrula (stage 12), differently from Rana pipiens development when tyrosinase mRNA appears at the neural plate stage and enzyme activity at stage 20 (gill circulation). We have cloned and sequenced the B. bufo tyrosinase cDNA in order to prepare B. bufo tyrosinase cDNA specific primers (forward and reverse). Tyrosinase mRNA cloning has been performed by using degenerate primers prepared according to the anuran tyrosinase gene sequence coding for the copper binding sites. The expressions of tyrosinase gene and enzymatic activity during B. bufo development support that until the developmental stage 17, embryo melanin is of maternal origin and at this stage can start embryo melanin synthesis. A correlation exists between tyrosinase expression and O2 consumption during B. bufo development. Keywords: Amphibian egg, Tyrosinase, Pigment cell, Melanin, Oxyge

    Estimation of DNA Degradation in Archaeological Human Remains

    No full text
    The evaluation of the integrity and quantity of DNA extracted from archaeological human remains is a fundamental step before using the latest generation sequencing techniques in the study of evolutionary processes. Ancient DNA is highly fragmented and chemically modified; therefore, the present study aims to identify indices that can allow the identification of potentially amplifiable and sequenceable DNA samples, reducing failures and research costs. Ancient DNA was extracted from five human bone remains from the archaeological site of Amiternum L’Aquila, Italy dating back to the 9th–12th century and was compared with standard DNA fragmented by sonication. Given the different degradation kinetics of mitochondrial DNA compared to nuclear DNA, the mitochondrially encoded 12s RNA and 18s ribosomal RNA genes were taken into consideration; fragments of various sizes were amplified in qPCR and the size distribution was thoroughly investigated. DNA damage degree was evaluated by calculating damage frequency (λ) and the ratio between the amount of the different fragments and that of the smallest fragment (Q). The results demonstrate that both indices were found to be suitable for identifying, among the samples tested, those less damaged and suitable for post-extraction analysis; mitochondrial DNA is more damaged than nuclear, in fact, amplicons up to 152 bp and 253 bp, respectively are obtained

    Particle Debris Generated from Passenger Tires Induces Morphological and Gene Expression Alterations in the Macrophages Cell Line RAW 264.7

    No full text
    Air pollution in the urban environment is a topical subject. Aero-suspended particles can cause respiratory diseases in humans, ranging from inflammation to asthma and cancer. One of the components that is most prevalent in particulate matter (PM) in urban areas is the set of tire microparticles (1–20 μm) and nanoparticles (<1 μm) that are formed due to the friction of wheels with asphalt and are increased in slow-moving areas that involve a lot of braking actions. In this work, we studied the effect that microparticles generated from passenger tires (PTWP, passenger tire wear particles) have in vitro on murine macrophages cells RAW 264.7 at two concentrations of 25 and 100 μg/mL, for 24 and 48 h. In addition to the chemical characterization of the material and morphological characterization of the treated cells by transmission electron microscopy, gene expression analysis with RT-PCR and active protein analysis with Western blotting were performed. Growth curves were obtained, and the genotoxic effect was evaluated with a comet assay. The results indicate that initially, an induction of the apoptotic process is observable, but this is subsequently reversed by Bcl2. No genotoxic damage is present, but mild cellular abnormalities were observed in the treated cells

    Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells

    No full text
    <div><p>Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O<sub>3</sub> while at 48 hours and 72 hours O<sub>3</sub> treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O<sub>3</sub> provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.</p></div

    Cell growth simulation models for the A549 cells.

    No full text
    <p>The model has been numerically solved for the time interval 0–72 hours in order to reproduce the measured curve of cell proliferation in both the conditions (control and treated cells).</p

    CBPI index in A549 and Hs27 cells 120 ppb O<sub>3</sub> treated.

    No full text
    <p>Cytokinesis Block Proliferation Index (CBPI) in human cells lines A549 and Hs27 treated with 120 ppb O<sub>3</sub> at 48, 72 hrs. The CBPI indicates the average number of nuclei per cell, and may be used to calculate cell proliferation. CBPI was calculated as follows: (1 × N1) + (2 × N2) + (3 × (N3 + N4))/N where N1–N4 represent the number of cells with 1–4 nuclei, respectively, and N is the total number of cells scored. The results are compared to the negative control and are the means ± ES. * <i>p</i> < 0.05.</p
    corecore