1,293 research outputs found

    Myocardial infarction, ST-elevation and non-ST-elevation myocardial infarction and modelled daily pollution concentrations; a case-crossover analysis of MINAP data

    Get PDF
    Objectives: To investigate associations between daily concentrations of air pollution and myocardial infarction (MI), ST-elevation myocardial infarction (STEMI) and non-ST-elevation myocardial infarction (NSTEMI). Methods: Modelled daily ground-level gaseous, total and speciated particulate pollutant concentrations and ground-level daily mean temperature, all at 5 km x 5 km horizontal resolution, were linked to 202,550 STEMI and 322,198 NSTEMI events recorded on the England and Wales Myocardial Ischaemia National Audit Project (MINAP) database. The study period was 2003-2010. A case-crossover design was used, stratified by year, month, and day of the week. Data were analysed using conditional logistic regression, with pollutants modelled as unconstrained distributed lags 0-2 days. Results are presented as percentage change in risk per 10 µg/m3 increase in the pollutant relevant metric, having adjusted for daily mean temperature, public holidays, weekly flu consultation rates, and a sine-cosine annual cycle. Results: There was no evidence of an association between MI or STEMI and any of O3, NO2, PM2.5, PM10 or selected PM2.5 components (sulphate and elemental carbon). For NSTEMI there was a positive association with daily maximum 1-hour NO2 (0.27% (95% CI: 0.01 to 0.54)), which persisted following adjustment for O3 and adjustment for PM2.5. The association appeared to be confined to the midland and southern regions of England and Wales. Conclusions: The study found no evidence of an association between the modelled pollutants (including components) investigated and STEMI but did find some evidence of a positive association between NO2 and NSTEMI. Confirmation of this association in other studies is required

    The impact of measurement error in modelled ambient particles exposures on health effect estimates in multi-level analysis: a simulation study.

    Get PDF
    Background: Various spatiotemporal models have been proposed for predicting ambient particulate exposure for inclusion in epidemiological analyses. We investigated the effect of measurement error in the prediction of particulate matter with diameter <10 µm (PM10) and <2.5 µm (PM2.5) concentrations on the estimation of health effects. Methods: We sampled 1,000 small administrative areas in London, United Kingdom, and simulated the “true” underlying daily exposure surfaces for PM10 and PM2.5 for 2009–2013 incorporating temporal variation and spatial covariance informed by the extensive London monitoring network. We added measurement error assessed by comparing measurements at fixed sites and predictions from spatiotemporal land-use regression (LUR) models; dispersion models; models using satellite data and applying machine learning algorithms; and combinations of these methods through generalized additive models. Two health outcomes were simulated to assess whether the bias varies with the effect size. We applied multilevel Poisson regression to simultaneously model the effect of long- and short-term pollutant exposure. For each scenario, we ran 1,000 simulations to assess measurement error impact on health effect estimation. Results: For long-term exposure to particles, we observed bias toward the null, except for traffic PM2.5 for which only LUR underestimated the effect. For short-term exposure, results were variable between exposure models and bias ranged from −11% (underestimate) to 20% (overestimate) for PM10 and of −20% to 17% for PM2.5. Integration of models performed best in almost all cases. Conclusions: No single exposure model performed optimally across scenarios. In most cases, measurement error resulted in attenuation of the effect estimate

    Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO2, O3, PM10 and PM2.5 for 2001-2010

    Get PDF
    This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km  ×  5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus of the model–measurement comparison statistics presented here was on the health-relevant metrics of annual and daily means of NO2, O3, PM2. 5, and PM10 (daily maximum 8 h running mean for O3). The comparison was temporally and spatially comprehensive, covering a 10-year period (2 years for PM2. 5) and all non-roadside measurement data from the UK national reference monitor network, which applies consistent operational and QA/QC procedures for each pollutant (44, 47, 24, and 30 sites for NO2, O3, PM2. 5, and PM10, respectively). Two important statistics highlighted in the literature for evaluation of air quality model output against policy (and hence health)-relevant standards – correlation and bias – together with root mean square error, were evaluated by site type, year, month, and day-of-week. Model–measurement statistics were generally better than, or comparable to, values that allow for realistic magnitudes of measurement uncertainties. Temporal correlations of daily concentrations were good for O3, NO2, and PM2. 5 at both rural and urban background sites (median values of r across sites in the range 0.70–0.76 for O3 and NO2, and 0.65–0.69 for PM2. 5), but poorer for PM10 (0.47–0.50). Bias differed between environments, with generally less bias at rural background sites (median normalized mean bias (NMB) values for daily O3 and NO2 of 8 and 11 %, respectively). At urban background sites there was a negative model bias for NO2 (median NMB  =  −29 %) and PM2. 5 (−26 %) and a positive model bias for O3 (26 %). The directions of these biases are consistent with expectations of the effects of averaging primary emissions across the 5 km  ×  5 km model grid in urban areas, compared with monitor locations that are more influenced by these emissions (e.g. closer to traffic sources) than the grid average. The biases are also indicative of potential underestimations of primary NOx and PM emissions in the model, and, for PM, with known omissions in the model of some PM components, e.g. some components of wind-blown dust. There were instances of monthly and weekday/weekend variations in the extent of model–measurement bias. Overall, the greater uniformity in temporal correlation than in bias is strongly indicative that the main driver of model–measurement differences (aside from grid versus monitor spatial representivity) was inaccuracy of model emissions – both in annual totals and in the monthly and day-of-week temporal factors applied in the model to the totals – rather than simulation of atmospheric chemistry and transport processes. Since, in general for epidemiology, capturing correlation is more important than bias, the detailed analyses presented here support the use of data from this model framework in air pollution epidemiology

    Microstructural evolution under low shear rates during Rheo processing of LM25 alloy

    Get PDF
    © ASM InternationalMicrostructural features of LM25 alloy processed by two different routes: (1) conventional casting, and(2)shear casting based on inclined heated surface are studied. The microstructures of the primary phase for the shear-cast samples show rosette or ellipsoidal morphologies. Heat transfer of contacting melt with the inclined tube surface and shear stress exerted on the layers of the melt as result of gravitational force are crucial parameters for the microstructural evolution. Compared to those produced by conventional casting, shear-cast samples have a much improved tensile strength and ductility due to globular microstructure

    Measurement error in a multi-level analysis of air pollution and health: a simulation study.

    Get PDF
    BACKGROUND: Spatio-temporal models are increasingly being used to predict exposure to ambient outdoor air pollution at high spatial resolution for inclusion in epidemiological analyses of air pollution and health. Measurement error in these predictions can nevertheless have impacts on health effect estimation. Using statistical simulation we aim to investigate the effects of such error within a multi-level model analysis of long and short-term pollutant exposure and health. METHODS: Our study was based on a theoretical sample of 1000 geographical sites within Greater London. Simulations of "true" site-specific daily mean and 5-year mean NO2 and PM10 concentrations, incorporating both temporal variation and spatial covariance, were informed by an analysis of daily measurements over the period 2009-2013 from fixed location urban background monitors in the London area. In the context of a multi-level single-pollutant Poisson regression analysis of mortality, we investigated scenarios in which we specified: the Pearson correlation between modelled and "true" data and the ratio of their variances (model versus "true") and assumed these parameters were the same spatially and temporally. RESULTS: In general, health effect estimates associated with both long and short-term exposure were biased towards the null with the level of bias increasing to over 60% as the correlation coefficient decreased from 0.9 to 0.5 and the variance ratio increased from 0.5 to 2. However, for a combination of high correlation (0.9) and small variance ratio (0.5) non-trivial bias (> 25%) away from the null was observed. Standard errors of health effect estimates, though unaffected by changes in the correlation coefficient, appeared to be attenuated for variance ratios > 1 but inflated for variance ratios < 1. CONCLUSION: While our findings suggest that in most cases modelling errors result in attenuation of the effect estimate towards the null, in some situations a non-trivial bias away from the null may occur. The magnitude and direction of bias appears to depend on the relationship between modelled and "true" data in terms of their correlation and the ratio of their variances. These factors should be taken into account when assessing the validity of modelled air pollution predictions for use in complex epidemiological models

    Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure

    Get PDF
    In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness (KIc) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10−2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. KIc of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that KIc depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of KIc is the distribution of grains rather than inherent microcracks in these rocks

    Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    Get PDF
    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC

    Is the drug-induced hypersensitivity syndrome (DIHS) due to human herpesvirus 6 infection or to allergy-mediated viral reactivation? Report of a case and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug-Induced Hypersensitivity Syndrome (DIHS) is a severe and rare systemic reaction triggered by a drug (usually an antiepileptic drug). We present a case of DISH and we review studies on the clinical features and treatment of DIHS, and on its pathogenesis in which two elements (Herpesvirus infection and the drug) interact with the immune system to trigger such a syndrome that can lead to death in about 20% of cases.</p> <p>Case presentation</p> <p>We report the case of a 26-year old woman with fever, systemic maculopapular rash, lymphadenopathy, hepatitis and eosinophilic leukocytosis. She had been treated with antibiotics that gave no benefit. She was taking escitalopram and lamotrigine for a bipolar disease 30 days before fever onset. Because the patient's general condition deteriorated, betamethasone and acyclovir were started. This treatment resulted in a mild improvement of symptoms. Steroids were rapidly tapered and this was followed with a relapse of fever and a worsening of laboratory parameters. Human herpesvirus 6 (HHV-6) DNA was positive as shown by PCR. Drug-Induced Hypersensitivity Syndrome (DIHS) was diagnosed. Symptoms regressed on prednisone (at a dose of 50 mg/die) that was tapered very slowly. The patient recovered completely.</p> <p>Conclusions</p> <p>The search for rare causes of fever led to complete resolution of a very difficult case. As DIHS is a rare disease the most relevant issue is to suspect and include it in differential diagnosis of fevers of unknown origin. Once diagnosed, the therapy is easy (steroidal administration) and often successful. However our case strongly confirms that attention should be paid on the steroidal tapering that should be very slow to avoid a relapse.</p
    corecore