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The impact of measurement error in modeled 
ambient particles exposures on health effect 
estimates in multilevel analysis
A simulation study
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Sean D. Beeversc, Andrew Beddowsc, Konstantina Dimakopouloua, Joel D. Schwartze,f, Mahdieh Danesh Yazdie,  
Klea Katsouyannia,d,g      

Introduction
The difficulty in defining ambient particles, given that their 
chemical and physical properties vary by time period, location, 
sources and meteorology, makes the understanding of measure-
ment error implications on health effects estimation even more 
important than gaseous pollutants unless we assume equitox-
icity. As mentioned in our joint article,1 measurement error in 
air pollution exposure estimates and the resulting impact on 
the estimation of health effects has attracted attention in recent 
years.2 Szpiro et al3 showed that better exposure prediction by 
land-use regression (LUR) models does not necessarily result in 
less bias in the health effect estimate following long-term expo-
sure. A review4 concluded that measurement error mostly nega-
tively biased the effect estimates and increased standard errors, 
especially when exposure concentration was modeled with low 
spatial and temporal resolution for a spatially variable pollutant.

Within the framework of the “Comparative evaluation of 
Spatio-Temporal Exposure Assessment Methods for estimating 
the health effects of air pollution” (STEAM) project, we assessed 

What this study adds
Epidemiological studies of the health effects of long- and short-
term exposure to outdoor particulate air pollution that utilize 
modeling techniques to derive pollution exposures will gener-
ally underestimate the magnitude of the associations (with over-
estimates in some cases). These biases are not trivial and should 
therefore be considered when assessing the evidence from epide-
miological studies in policy evaluation and health impact assess-
ment exercises. This study also suggests no single air pollution 
modeling method is optimal and further work on the integra-
tion of models to maximize performance is advisable.
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Background: Various spatiotemporal models have been proposed for predicting ambient particulate exposure for inclusion in 
epidemiological analyses. We investigated the effect of measurement error in the prediction of particulate matter with diameter <10 
µm (PM10) and <2.5 µm (PM2.5) concentrations on the estimation of health effects.
Methods: We sampled 1,000 small administrative areas in London, United Kingdom, and simulated the “true” underlying daily exposure 
surfaces for PM10 and PM2.5 for 2009–2013 incorporating temporal variation and spatial covariance informed by the extensive London 
monitoring network. We added measurement error assessed by comparing measurements at fixed sites and predictions from spatio-
temporal land-use regression (LUR) models; dispersion models; models using satellite data and applying machine learning algorithms; 
and combinations of these methods through generalized additive models. Two health outcomes were simulated to assess whether 
the bias varies with the effect size. We applied multilevel Poisson regression to simultaneously model the effect of long- and short-term 
pollutant exposure. For each scenario, we ran 1,000 simulations to assess measurement error impact on health effect estimation.
Results: For long-term exposure to particles, we observed bias toward the null, except for traffic PM2.5 for which only LUR under-
estimated the effect. For short-term exposure, results were variable between exposure models and bias ranged from −11% (under-
estimate) to 20% (overestimate) for PM10 and of −20% to 17% for PM2.5. Integration of models performed best in almost all cases.
Conclusions: No single exposure model performed optimally across scenarios. In most cases, measurement error resulted in atten-
uation of the effect estimate.

Keywords: Health effects; Measurement error; Modeled air pollution; Particulate matter
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the impact of measurement error in spatiotemporal exposure 
predictions developed for greater London for 2009–2013 on 
the health effect estimate in a mixed Poisson model that allows 
for the simultaneous estimation of effects following short- and 
long-term exposure.5 We previously6 evaluated the impact of 
several scenarios and indicated that measurement error in NO2 
and PM10 resulted mostly in the attenuation of effect estimates 
for both short- and long-term exposure. In this article, we pres-
ent the results of an extensive simulation study to address the 
impact of measurement error from spatiotemporal predictions 
of PM10 and PM2.5 concentrations from various exposure assess-
ment models on the effect estimates of daily mortality and hos-
pital admissions due to cardiovascular diseases (CVD).

Methods
We set up simulations for a sample of 1,000 lower super output 
areas (LSOAs, a small geographic area) in the Greater London 
area7 informed by correlation coefficients and variance ratios 
estimated from validation datasets for 2009–2013, which 
compare modeled pollutant data with measurements from the 
extensive London network of fixed-site monitors. We simulated 
from reported coefficients for two different outcomes: all-cause 
mortality and CVD hospital admissions, driven by the need to 
assess differential behavior depending on the prevalence and the 
variability of the outcome and the range of the effect estimate. 
Simulations were based on concentration-response functions 
(CRF) that varied in magnitude to allow for the assessment of a 
range of situations that have been reported in the literature. For 
each scenario, 1,000 simulations were run.

Measurements from fixed site monitors and enhanced 
PM2.5 database

We constructed a database of ambient particles (24-hour aver-
age PM10 and PM2.5) concentrations including all measurements 
from sites within the M25 orbital highway, during the years 
2009–2013, obtained from the London Air Quality Network,8 
Air Quality England,9 and the Automatic Urban and Rural 
Network.10 For PM10, we compiled data from 115 sites while 
PM2.5 data were available only from 33 sites. To inform LUR 
and machine learning models and the validation datasets used 
in the simulations, we needed a larger PM2.5 database, hence we 
enhanced the available data based on a modeling approach.

Briefly, at each PM10 monitoring location, we fit models for 
combining PM2.5 predictions from a generalized additive model 
(GAM) and a random forest approach,11 both of which incor-
porated seasonality trend, concurrent measurements of other 
pollutants, and meteorological variables. The predictions from 
each model were entered as spline functions in a new GAM. The 
10-fold cross-validation adjusted R2 of the combined model was 
98.9%.

The final data included information from 37 urban/suburban 
sites for PM10 and 32 for PM2.5, and from 65 roadside/kerbside 
for PM10 and 60 for PM2.5.

PM exposure models

We developed spatiotemporal LUR and dispersion models to 
estimate the particles’ concentration at the postcode centroid 
level which were then averaged to produce concentrations at 
LSOA level. LUR models provide estimates at specific geograph-
ical point coordinates (e.g., the postcode centroid) while dis-
persion estimates provide exposure maps at a 20 × 20 m grid 
and we subsequently applied bilinear interpolation to estimate 
concentrations at a certain location.1 For PM2.5, we further 
incorporated satellite measurements and applied three machine 
learning algorithms that were combined in a GAM to produce 
spatiotemporal concentrations at a 1 × 1 km grid.

Land-use regression models

We developed spatiotemporal semiparametric models where the 
measurement of the particles at location i on day t is modeled 
as a combination of smooth functions reflecting the nonlinear 
effects of several temporal covariates (daily mean temperature, 
daily mean wind direction, daily mean barometric pressure, 
variable for day count, accounting for trends within each year) 
and a spatial covariate (inverse distance of monitoring sites to 
the nearest major road).We included indicator variables for dif-
ferent years (reference category was 2009), daily mean relative 
humidity, daily mean wind speed, total traffic load in a buffer 
of 100 m around each monitoring site and total length of major 
roads in a buffer of 300 m around each monitoring site. A bivar-
iate smooth function of geographical coordinates accounting 
for residual correlation between locations was included.

Dispersion models

The Community Multiscale Air Quality urban (CMAQ-urban) 
model12,13 combines emissions data with the Weather Research 
and Forecasting meteorological model14 and the Community 
Multiscale Air Quality (CMAQ) model (v5.0.2),15 which has 
been coupled to the Atmospheric Dispersion Modelling System 
roads model (v4).16 Driven by meteorological fields from the 
WRF model, the CMAQ-urban model outputs hourly air pol-
lution concentrations at high spatial resolution and predicts air 
pollution concentrations at points spaced 20 m apart across the 
STEAM area. To provide a concentration at the fixed sites, we 
used bilinear interpolation of the nearest 20 m points.

Machine learning algorithms for satellite-based models

Only for the exposure assessment of PM2.5, we applied three 
machine learning algorithms that incorporated all the available 
spatiotemporal covariates along with satellite measurements on 
aerosol optical depth (AOD) using the MAIAC algorithm for 
MODIS. Specifically we used measurements from both the Aqua 
and Terra Satellite, with data on population density, cloudiness, 
barometric pressure, wind direction, wind speed, dewpoint tem-
perature, temperature, land use type, distance to water, distance 
to Heathrow, inverse of the height of the planetary boundary 
layer, normalized difference vegetation index, traffic counts, and 
day of the year (with a sine and cosine function). Machine learn-
ing algorithms are prediction algorithms that train on a subset of 
the data, predict on held out data, and choose training parameters 
that maximize predictive power in the held out, testing data. By 
design, they can incorporate highly nonlinear and highly interac-
tive models, without prespecifying which variables are nonlinear, 
what the nonlinearity looks like, and which variables interact.

We trained three models (random forest,11 neural network,17 
gradient boosting18) to predict PM2.5 separately from Aqua 
AOD and Terra AOD, therefore six models in total. Training 
was based on a grid search of hyperparameters for each learner, 
using internal cross-validation (CV) and mean square error as 
the criteria for selection. The neural network included a Least 
Absolute Shrinkage and Selection Operator on the variables to 
reduce overfitting. We then combined the six individual pre-
dictions of the output of the methods in a GAM using uncon-
strained smooth functions and a smooth function for longitude 
and latitude.

Hybrid models

By weighing the individual methods’ possibly different perfor-
mance along the concentration range of the pollutants, the com-
bination of different methods may result in less measurement 
error and subsequently less bias in the health effect estimates. 
We therefore applied the following hybrid models depending on 
availability of approaches:
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Hybrid 1: For PM10 and PM2.5, we constructed a combined 
LUR-dispersion model by incorporating into the LUR a smooth 
function of the daily predictions from the dispersion model.

Hybrid 2: For PM10 and PM2.5, a GAM approach was applied 
to combine predicted pollutant concentrations from the devel-
oped spatiotemporal LUR and CMAQ-urban dispersion models. 
The GAM was developed by fitting two corresponding splines 
of the predicted variables (LUR and CMAQ). For the LUR, we 
used 10-fold cross-validated predictions.

Hybrid 3: In the case of PM2.5, the hybrid model 2 was 
extended to include a smooth function of the predictions from 
the combined machine learning methods.

Simulations set-up

The set-up of the simulations has been presented in the com-
panion paper.1 Briefly, we (1) sample 1,000 LSOAs with their 
coordinates from the study area; (2) For this sample of 1,000 
LSOAs, we simulated “true” daily pollutant concentrations (X*) 
informed by either the urban/suburban or the kerbside/roadside 
fixed sites assuming that differential measurement error occurs 
by site type. Temporal correlation and the spatial variation, as 
estimated by a covariance model fitted to the empirical semivar-
iogram, were incorporated in the “true” surface that was also 
adjusted for instrument error in the monitor measurements; 
(3) We simulated a daily health outcome (Y) over 2009−2013 
from the “true” pollutant data using CRF from the literature 
(eAppendix, Table S1; http://links.lww.com/EE/A88) based on 
a simple multilevel Poisson regression model, with a random 
intercept per LSOA, where the effect of short-term exposure is 
estimated by the coefficient corresponding to the daily time-se-
ries and the effect of long-term exposure to the coefficient of the 
average over the period exposure; (4) We added to the “true” 
daily pollutant concentrations measurement error informed by 
the validation data at the fixed sites that provided estimates of 
the spatial and temporal correlations and variance ratios. A new 
pollution variable (Z) corresponding to each exposure method 
was created; (5) We analyzed the association between each 
health outcome (Y) and new pollutant (Z) and estimated the 
two coefficients denoting the effect following short- and long-
term exposure and their standard errors; (6) We ran 1,000 simu-
lations and assessed the results in terms of bias (mean difference 
between true and estimated effect estimate), statistical power 
(percentage of simulations where the effect estimate is statisti-
cally significant at the 5% level) and coverage probability (% 
of simulations where the 95% confidence interval [CI] contains 
the true CRF).

All analyses were run in R version 3.4.3 (http://www.R-proj-
ect.org/, 2017) using the libraries mgcv, randomForest, Hmisc, 
lme4, MASS, and foreign. In GAM, the default generalized 
cross-validation criterion (GCV) was used for the choice of the 
smoothing parameter as defined in the mgcv library.

Results

Table 1 presents the spatial and temporal correlation coefficients 
between the “true” and modeled concentrations and their cor-
responding variance ratios (modeled over “true”) as provided 
by validation data. These inform the simulations of particulate 
concentrations for each assessment method from the “true” 
exposure surface and define the scenarios presented in Tables 2 
and 3. Temporal correlations were larger compared with spatial 
ones. Of the 16 variance ratios (eight spatial and eight temporal) 
calculated for PM10 and for PM2.5, five per pollutant deviated 
from 1 by less than 10%, and these were mostly temporal. The 
LUR consistently displayed the lowest and the dispersion model 
the highest temporal variance ratio.

Table 2 presents the simulations results for the associations 
between PM10 and total mortality. CVD hospital admissions 

results are presented in eAppendix, Table S2; http://links.lww.
com/EE/A88. Regarding long-term exposure results, all models 
irrespective of outcome, method, and monitor type displayed 
bias toward the null ranging from −21% to −104%. For both 
total mortality and CVD admissions, the best-performing model 
was hybrid 2 with biases of −60% and −48% for urban/sub-
urban monitors and −21% and −26% for roadside/kerbside 
monitors. Coverage probabilities were high for mortality but 
very low for CVD admissions that were simulated based on a 
much larger CRF as compared to mortality. Statistical power 
was generally low.

Results for mortality effects following short-term exposure 
displayed negative (i.e., towards the null) bias for roadside/kerb-
side monitors ranging from −2% (hybrid 2) to −11% (hybrid 1) 
and variable bias for urban/suburban monitors: relatively small 
for the dispersion (−2%), the hybrid 1 (+2%), and the hybrid 2 
(+6.4%) and larger for the LUR (+20%). Coverage probabilities 
ranged from 93% to 95% with power between 11% and 15%. 
Hospital admission analysis provided similar results but with 
higher statistical power. For both outcomes, the best-performing 
models were the hybrid 2 model for kerbside/roadside concen-
trations and the dispersion prediction when considering urban/
suburban sites.

Table  3 presents the simulation results for the associations 
between PM2.5 and total mortality, while eAppendix, Table S3; 
http://links.lww.com/EE/A88, presents results for CVD hospital 
admissions. Results were more variable in the direction of bias 
compared with PM10 results. For the long-term results, consid-
erable negative bias (i.e., toward the null) was exhibited for 
all models under the urban/suburban characterization of the 
simulated “true” exposure, with the hybrid 3 model having the 
smallest bias (−19% for mortality and −21% for CVD admis-
sions). For the kerbside/roadside sites, positive bias (i.e., away 
from the null) ranging from +7% to +73% was displayed for 
all except the LUR (−22% for mortality; −6% for CVD) pre-
dictions. The best-performing model in terms of the magnitude 
of the bias being hybrid 1 (incorporating dispersion estimates 
into LUR) for total mortality and the LUR model for the CVD 
admissions. For short-term results, biases, though variable in 
direction, were generally small ranging from −20% to +17% 
across outcomes and site-type. Coverage probabilities for PM2.5 
were generally high, except for long-term exposure based on 
roadside/kerbside sites. Statistical power was highest for short-
term exposure within roadside/kerbside scenarios (>74%) and 
lowest for long-term exposure within urban/suburban scenarios 
(<25%). Validation statistics (eAppendix, Table S4; http://links.
lww.com/EE/A88) support better performance of the hybrid 
models.

Discussion

Our simulations indicated bias toward the null for most sce-
narios, except in the case of kerbside/roadside PM2.5 that 
showed a bias away from the null for long-term exposure. 
For PM10 under most scenarios, the hybrid 2 model combin-
ing predictions from LUR and dispersion methods exhibited 
the smallest bias. The combination of methods under Hybrid 
model 3 performed best for urban/suburban PM2.5 for both 
outcomes, while for kerbside/roadside, the machine learning 
algorithms provided the most accurate estimate for short-
term exposure but not for long-term exposure, where the best 
model appeared to be hybrid 1 for mortality and LUR for 
CVD admissions. Our approach simulates situations in which 
the spatial and temporal correlation coefficients and variance 
ratios relating the “pseudo” modeled and “true” data mirror 
those estimated from the validation datasets (including adjust-
ment for instrument error in the measurements) and it is the 
correlation coefficients and variance ratio that we are testing 
out in our simulations.

http://links.lww.com/EE/A88
http://www.R-project.org/
http://www.R-project.org/
http://links.lww.com/EE/A88
http://links.lww.com/EE/A88
http://links.lww.com/EE/A88
http://links.lww.com/EE/A88
http://links.lww.com/EE/A88
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In line with Butland et al,6 we find that as correlation gets 
smaller and the variance ratio larger the bias toward the null is 
increased, while bias away from the null was noted for high cor-
relations and small variance ratios. The error in the “modeled” 
exposures is a combination of classical and Berkson that is not 
distinguishable, although larger Berkson-like error is expected 
in methods with smaller variance ratio. This scenario in most 
cases corresponds to Hybrid models but is not consistent across 
the temporal and spatial terms.

Although results from PM2.5 are more variable, combination 
of methods performed better than individual ones. Bias toward 
the null for long-term effects was observed for all methods for 
urban/suburban monitors, while bias away from the null was 
observed for kerbside/roadside PM2.5 for five out of six meth-
ods. However for short-term exposures, biases though varying 
in direction were relatively small.

The optimal performance of combinations of methods under 
nearly every scenario may be attributed to potentially better cap-
ture of different characteristics of the particles’ distribution and 
composition. For example, the combination of several machine 
learning algorithms may perform better in traffic-related PM2.5 
as it may be more flexible in capturing a variety of interactions 
between covariates and their shapes and hence better capture 
variability of levels near traffic. In all cases, the Hybrid models 

attributed more degrees of freedom to estimates derived from 
the dispersion models, then to machine-learning predictions and 
less to those from LUR.

Previous air pollution exposure research19,20 mainly focused 
on methods’ performance assessment in terms of estimat-
ing concentrations. Szpiro et al3 found in a simulation study 
that improving the predictions in spatial LUR models did not 
always improve the health effect estimate as this was depen-
dent on the Berkson-type of error and its differential impact 
on the exposure and health association as a component of the 
complex combination between classical and Berkson type-er-
ror in exposure assessment. Lee et al21 in a subsequent simula-
tion study found that the validity and reliability of the health 
effect estimate can be greatly affected by the sampling of the 
monitor locations used to inform spatial LUR models, while 
Wang et al22 reported that decreases in forced vital capacity in 
relation to air pollution exposure were larger for LUR mod-
els with larger predictive ability in terms of holdout validation 
and cross-holdout validation. A recent review2 indicated that 
application of measurement error correction methods mainly 
in cohort designs, that applied a variety of exposure methods 
including spatial and spatiotemporal LUR and kriging meth-
ods, resulted in increases in effect estimates and their standard 

Table 1.

Estimates of spatial and temporal correlation coefficients (αs and αt) and variance ratios (γs and γt).

Pollutant Site type Method αs γs αt γt

PM
10

Urban/suburban background LUR 0.134 1.177 0.711 0.370
Dispersion 0.386 0.613 0.954 0.968
Hybrid 1 0.212 1.063 0.949 0.846
Hybrid 2 0.367 0.514 0.953 0.793

Roadside/kerbside LUR 0.136 1.674 0.753 0.532
Dispersion 0.693 1.021 0.976 1.071
Hybrid 1 0.330 1.518 0.956 1.041
Hybrid 2 0.688 0.847 0.963 0.877

PM
2.5

Urban/suburban background LUR 0.415 1.167 0.773 0.438
Dispersion 0.422 0.883 0.953 1.423
Machine learning 0.305 0.418 0.950 1.103
Hybrid 1 0.335 1.121 0.954 0.855
Hybrid 2 0.414 0.538 0.952 0.904
Hybrid 3 0.465 0.381 0.964 0.973

 Roadside/kerbside LUR 0.194 1.061 0.785 0.555
Dispersion 0.560 1.179 0.950 1.281
Machine learning 0.384 0.579 0.971 0.995
Hybrid 1 0.359 1.197 0.947 0.965
Hybrid 2 0.548 0.754 0.950 0.824
Hybrid 3 0.539 0.500 0.977 0.886

Table 2.

Simulations’ results for the association between all-cause mortality and PM10.

Effect estimate for 10 μg/m3 increase in short-term exposure Effect estimate for 10 μg/m3 increase in long-term exposure

β̂
1×10

(se(β1̂)×10 Biasa (%)
Coverage  

probability (%) Power (%)

β2̂×10

(se(β̂2)×10 Biasa (%)
Coverage  

probability (%) Power (%)

Urban/suburban         
 Land-use regression 0.00385 (0.00604) 20.4 94.7 11.1 −0.00121 (0.09330) −103.5 92.0 5.6
 Dispersion 0.00314 (0.00374) −2.0 93.6 15.4 0.01257 (0.12159) −63.5 90.6 8.8
 Hybrid 1 0.00326 (0.00400) 2.0 92.8 14.3 0.00223 (0.09703) −93.5 92.4 7.3
 Hybrid 2 0.00340 (0.00413) 6.4 93.3 15.1 0.01384 (0.13028) −59.8 88.8 10.5
Roadside/kerbside         
 Land-use regression 0.00313 (0.00452) −2.2 94.7 10.6 0.00033 (0.05274) −99.0 86.3 6.5
 Dispersion 0.00284 (0.00319) −11.2 94.9 14.8 0.02268 (0.06650) −34.1 93.4 7.3
 Hybrid 1 0.00284 (0.00323) −11.3 94.0 13.2 0.00941 (0.05510) −72.6 89.6 8.1
 Hybrid 2 0.00314 (0.00352) −1.9 94.3 14.7 0.02712 (0.07273) −21.2 93.0 8.7

The true effects considered were 0.0032 for short-term exposure and 0.0344 for long-term exposure per 10 μg/m3 increase in PM
10

. 
aPercent bias is highlighted in bold when positive (i.e., away from the null) rather than negative (i.e., toward the null).
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errors, which is in accordance with our simulation findings for 
long-term effects on background PM.

We recognize that the great majority of air pollution epidemi-
ological studies follow either a time-series approach to investi-
gate effects following short-term exposure or a cohort design for 
long-term exposure. As previous reports on measurement error 
investigated its effect under these designs, we aimed to expand 
the literature under a mixed modeling approach. In addition, 
the main objective of the STEAM project was the development 
of several exposure models for London and the optimal choice 
based on the best performance in terms of the effect estimation 
as assessed by simulations under this a-priori defined model-
ing approach. Hence we consider among the strengths of our 
study the comparison of several exposure assessment models 
in both the short- and long-term associations. Further the set 
up of the simulated surface incorporated both spatial and tem-
poral complex covariances and correlations in contrast with 
most previous reports that focus on either aspect.3,23 We pro-
duced the validation data sets for our simulation on LUR and 
the machine learning algorithms using a 10% cross-validation 
to avoid including monitors incorporated in the methods in the 
setting of our simulation, although retrospectively that may be 
an overcorrection. Also our study was based in London where 
the number of fixed site monitors is large compared with other 
urban centers. The classification of our validation data and cor-
responding simulations by site type guards against driving the 
simulated “true” exposure at the centroid of the LSOA by this 
characteristic and further helps to identify if there is a weakness 
in terms of the ability of the model to predict for the one or the 
other of the site types.

Limitations include the lack of confounders in our epide-
miological model and the uncertainty in mean bias over the 
simulations, which seems to be larger in our results compared 
with the gaseous analysis1. More importantly, the amount 

of measurement error in each exposure method may differ in 
other locations; hence our results are not directly transferable to 
other settings. We expect differential measurement error due to 
varying covariates informing the methods by location, although 
Vlaanderen et al24 suggest that the impact is modest in LUR 
providing the models perform well.

Conclusions

Our simulations investigating the impact of the measurement 
error for PM2.5 and PM10 from various exposure assessment 
models on the health effect estimates support that the underes-
timation was larger when assessing long-term exposures. There 
were instances of nontrivial bias away from the null especially 
when roadside/kerbside monitoring sites were considered. 
Averaging of different exposure predictions performed best in 
almost all cases indicating that the integration of models to 
maximize performance is advisable.
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Table 3.

Simulations’ results for the association between all-cause mortality and PM2.5.

Model

Effect estimate for 10 μg/m3 increase  
in short-term exposure

Effect estimate for 10 μg/m3 increase  
in long-term exposure

β̂
1×10

(se(β1̂)×10 Biasa (%)
Coverage 

probability (%) Power (%)

β2̂×10

(se(β̂2)×10 Biasa (%)
Coverage 

probability (%)
Power 

(%)

Urban/suburban Land-use regression 0.01166 
(0.00642)

16.6 94.8 43.7 0.02360 
(0.14455)

−65.6 89.9 8.9

Dispersion 0.00799 
(0.00356)

−20.1 90.8 60.2 0.02927 
(0.15825)

−57.3 90.4 8.6

Machine learning methods 0.00909 
(0.00404)

−9.1 94.2 62.1 0.04061 
(0.20439)

−40.8 86.0 15.3

Hybrid 1 0.01035 
(0.00459)

3.5 95.3 60.0 0.02170 
(0.14578)

−68.4 91.9 8.0

Hybrid 2 0.01007 
(0.00447)

0.7 95.3 61.8 0.03658 
(0.19084)

−46.7 86.9 13.2

Hybrid 3 0.00984 
(0.00430)

−1.6 95.2 62.8 0.05574 
(0.21437)

−18.7 84.3 16.8

Roadside kerbside Land-use regression 0.01064 
(0.00403)

6.4 95.0 74.7 0.05372 
(0.05982)

−21.7 59.2 45.6

Dispersion 0.00845 
(0.00266)

−15.5 91.4 89.5 0.07749 
(0.05142)

13.0 70.4 44.5

Machine learning methods 0.00968 
(0.00301)

−3.2 95.1 88.5 0.11602 
(0.06145)

69.1 51.9 58.8

Hybrid 1 0.00967 
(0.00306)

−3.3 95.5 89.7 0.07317 
(0.05335)

6.7 62.7 48.3

Hybrid 2 0.01049 
(0.00331)

4.9 95.1 89.0 0.09793 
(0.05338)

42.8 61.2 51.1

Hybrid 3 0.01037 
(0.00319)

3.7 94.7 89.5 0.11716 
(0.06015)

70.8 52.8 57.0

The true effects considered were 0.0100 for short-term exposure and 0.0686 for long-term per 10 μg/m3 increase in PM
2.5

. 
aPercent bias is highlighted in bold when positive (i.e., away from the null) rather than negative (i.e., toward the null).
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