228 research outputs found

    "They think we're OK and we know we're not". A qualitative study of asylum seekers' access, knowledge and views to health care in the UK

    Get PDF
    <i>Background</i>: The provision of healthcare for asylum seekers is a global issue. Providing appropriate and culturally sensitive services requires us to understand the barriers facing asylum seekers and the facilitators that help them access health care. Here, we report on two linked studies exploring these issues, along with the health care needs and beliefs of asylum seekers living in the UK. <i>Methods</i>: Two qualitative methods were employed: focus groups facilitated by members of the asylum seeking community and interviews, either one-to-one or in a group, conducted through an interpreter. Analysis was facilitated using the Framework method. <i>Results</i>: Most asylum seekers were registered with a GP, facilitated for some by an Asylum Support nurse. Many experienced difficulty getting timely appointments with their doctor, especially for self-limiting symptoms that they felt could become more serious, especially in children. Most were positive about the health care they received, although some commented on the lack of continuity. However, there was surprise and disappointment at the length of waiting times both for hospital appointments and when attending accident and emergency departments. Most had attended a dentist, but usually only when there was a clinical need. The provision of interpreters in primary care was generally good, although there was a tension between interpreters translating verbatim and acting as patient advocates. Access to interpreters in other settings, e.g. in-patient hospital stays, was problematic. Barriers included the cost of over-the-counter medication, e.g. children's paracetamol; knowledge of out-of-hours medical care; and access to specialists in secondary care. Most respondents came from countries with no system of primary medical care, which impacted on their expectations of the UK system. <i>Conclusion</i>: Most asylum seekers were positive about their experiences of health care. However, we have identified issues regarding their understanding of how the UK system works, in particular the role of general practitioners and referral to hospital specialists. The provision of an Asylum Support nurse was clearly a facilitator to accessing primary medical care. Initiatives to increase their awareness and understanding of the UK system would be beneficial. Interpreting services also need to be developed, in particular their role in secondary care and the development of the role of interpreter as patient advocate

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia Type 3 pathogenesis

    Get PDF
    DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.This research was supported by USPHS grant NS073976 (TKH) and P30 ES 06676 that support the NIEHS Center Cell Biology Core and Molecular Genomics Core of UTMB’s NIEHS Center for DNA sequencing. TKP is supported by CA129537 and CA154320. This work was also supported by Fundação para a CiΓͺncia e Tecnologia through the project [PTDC/SAU-GMG/101572/2008] and through fellowships [SFRH/BPD/91562/2012 to ASF, SFRH/BD/51059/2010 to ANC]. IB is supported by NIEHS R01 ES018948 and NIAID/AI06288

    Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224)

    Get PDF
    Tetrathiomolybdate (choline salt; ATN-224), a specific, high-affinity copper binder, is currently being evaluated in several phase II cancer trials. ATN-224 inhibits CuZn superoxide dismutase 1 (SOD1) leading to antiangiogenic and antitumour effects. The pharmacodynamics of tetrathiomolybdate has been followed by tracking ceruloplasmin (Cp), a biomarker for systemic copper. However, at least in mice, the inhibition of angiogenesis occurs before a measurable decrease in systemic copper is observed. Thus, the identification and characterisation of other biomarkers to follow the activity of ATN-224 in the clinic is of great interest. Here, we present the preclinical evaluation of two potential biomarkers for the activity of ATN-224: (i) SOD activity measurements in blood cells in mice and (ii) levels of endothelial progenitor cells (EPCs) in bonnet macaques treated with ATN-224. The superoxide dismutase activity in blood cells in mice is rapidly inhibited by ATN-224 treatment at doses at which angiogenesis is maximally inhibited. Furthermore, ATN-224 dosing in bonnet macaques causes a profound and reversible decrease in EPCs without significant toxicity. Thus, both SOD activity measurements and levels of EPCs may be useful biomarkers of the antiangiogenic activity of ATN-224 to be used in its clinical development

    Ataxin-3 Plays a Role in Mouse Myogenic Differentiation through Regulation of Integrin Subunit Levels

    Get PDF
    BACKGROUND: During myogenesis several transcription factors and regulators of protein synthesis and assembly are rapidly degraded by the ubiquitin-proteasome system (UPS). Given the potential role of the deubiquitinating enzyme (DUB) ataxin-3 in the UPS, and the high expression of the murine ataxin-3 homolog in muscle during embryogenesis, we sought to define its role in muscle differentiation. METHODOLOGY/PRINCIPAL FINDINGS: Using immunofluorescence analysis, we found murine ataxin-3 (mATX3) to be highly expressed in the differentiated myotome of E9.5 mouse embryos. C2C12 myoblasts depleted of mATX3 by RNA interference exhibited a round morphology, cell misalignment, and a delay in differentiation following myogenesis induction. Interestingly, these cells showed a down-regulation of alpha5 and alpha7 integrin subunit levels both by immunoblotting and immunofluorescence. Mouse ATX3 was found to interact with alpha5 integrin subunit and to stabilize this protein by repressing its degradation through the UPS. Proteomic analysis of mATX3-depleted C2C12 cells revealed alteration of the levels of several proteins related to integrin signaling. CONCLUSIONS: Ataxin-3 is important for myogenesis through regulation of integrin subunit levels.This work was financed by the Fundacao para a Ciencia e a Tecnologia (FCT) (POCI/SAU-MMO/60412/2002) and by National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) grant RO1 NS038712 to HLP. MCC, FB, AJR, and RJT were supported by the FCT fellowships (SFRH/BD/9759/2003 and SFRH/BPD/28560/2006), (SFRH/BPD/17368/2004), (SFRH/BD/17066/2004), (SFRH/BD/29947/2006), respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF<sup>Slmb</sup> degron

    Get PDF
    Spinal muscular atrophy (SMA) is caused by homozygous mutations in human SMN1. Expression of a duplicate gene (SMN2) primarily results in skipping of exon 7 and production of an unstable protein isoform, SMNΞ”7. Although SMN2 exon skipping is the principal contributor to SMA severity, mechanisms governing stability of survival motor neuron (SMN) isoforms are poorly understood. We used a Drosophila model system and label-free proteomics to identify the SCFSlmb ubiquitin E3 ligase complex as a novel SMN binding partner. SCFSlmb interacts with a phosphor degron embedded within the human and fruitfly SMN YG-box oligomerization domains. Substitution of a conserved serine (S270A) interferes with SCFSlmb binding and stabilizes SMNΞ”7. SMA-causing missense mutations that block multimerization of full-length SMN are also stabilized in the degron mutant background. Overexpression of SMNΞ”7S270A, but not wild-type (WT) SMNΞ”7, provides a protective effect in SMA model mice and human motor neuron cell culture systems. Our findings support a model wherein the degron is exposed when SMN is monomeric and sequestered when SMN forms higher-order multimers

    'Yeah that made a big difference!': The importance of the relationship between health professionals and fathers who have a child with Down Syndrome

    Get PDF
    Evidence suggests that medical services do not reflect the increased involvement of fathers in childcare, a discrepancy that can often lead to feelings of exclusion and inequality. Fathers who have a child with Down syndrome may encounter many different health professionals during their child’s life, therefore it is important to consider this relationship, and investigate the factors that influence their experiences. This is particularly important because the limited research focusing on fathers suggest that those who have a child with Down syndrome can experience increased stress levels and lasting feelings of loss and grief. It is therefore important to address their relationships with health professionals, as these may be a significant resource to prevent these feelings. This study used interpretative phenomenological analysis (IPA) to explore the experiences of seven fathers who have a child with Down syndrome, focusing on their interactions with health professionals. The analysis showed that the major factors associated with negative experiences were feelings of exclusion, receiving overly negative information about the condition and a perceived lack of on-going support. Positive experiences were associated with being made to feel like an equal parent, being given direct/clear information and being congratulated on the birth of their child. These results provide an insight into what fathers expect in terms of their own and their child’s care and highlight that health professionals have an important and extensive role in influencing fathers’ experiences of Down syndrome

    Molecular Determinants of Survival Motor Neuron (SMN) Protein Cleavage by the Calcium-Activated Protease, Calpain

    Get PDF
    Spinal muscular atrophy (SMA) is a leading genetic cause of childhood mortality, caused by reduced levels of survival motor neuron (SMN) protein. SMN functions as part of a large complex in the biogenesis of small nuclear ribonucleoproteins (snRNPs). It is not clear if defects in snRNP biogenesis cause SMA or if loss of some tissue-specific function causes disease. We recently demonstrated that the SMN complex localizes to the Z-discs of skeletal and cardiac muscle sarcomeres, and that SMN is a proteolytic target of calpain. Calpains are implicated in muscle and neurodegenerative disorders, although their relationship to SMA is unclear. Using mass spectrometry, we identified two adjacent calpain cleavage sites in SMN, S192 and F193. Deletion of small motifs in the region surrounding these sites inhibited cleavage. Patient-derived SMA mutations within SMN reduced calpain cleavage. SMN(D44V), reported to impair Gemin2 binding and amino-terminal SMN association, drastically inhibited cleavage, suggesting a role for these interactions in regulating calpain cleavage. Deletion of A188, a residue mutated in SMA type I (A188S), abrogated calpain cleavage, highlighting the importance of this region. Conversely, SMA mutations that interfere with self-oligomerization of SMN, Y272C and SMNΞ”7, had no effect on cleavage. Removal of the recently-identified SMN degron (Ξ”268-294) resulted in increased calpain sensitivity, suggesting that the C-terminus of SMN is important in dictating availability of the cleavage site. Investigation into the spatial determinants of SMN cleavage revealed that endogenous calpains can cleave cytosolic, but not nuclear, SMN. Collectively, the results provide insight into a novel aspect of the post-translation regulation of SMN

    Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes

    Get PDF
    Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% cases of SMA result from deletions or mutations of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1due to predominant skipping of exon 7. However, correction of SMN2 exon 7 splicing has proven to confer therapeutic benefits in SMA patients. The only approved drug for SMA is an antisense oligonucleotide (Spinrazaβ„’/Nusinersen), which corrects SMN2 exon 7 splicing by blocking intronic splicing silencer N1 (ISS-N1) located immediately downstream of exon 7. ISS-N1 is a complex regulatory element encompassing overlapping negative motifs and sequestering a cryptic splice site. More than 40 protein factors have been implicated in the regulation of SMN exon 7 splicing. There is evidence to support that multiple exons of SMN are alternatively spliced during oxidative stress, which is associated with a growing number of pathological conditions. Here, we provide the most up to date account of the mechanism of splicing regulation of the SMN genes
    • …
    corecore