67 research outputs found

    Cervical squamous carcinoma cells are resistant to the combined action of tumor necrosis factor-α and histamine whereas normal keratinocytes undergo cytolysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous reports showed that mast cells can typically be found in the peritumoral stroma of cervix carcinomas as well as in many other cancers. Both histamine and TNF-α are potent preformed mast cell mediators and they can act simultaneously after release from mast cells. Thus, the effect of TNF-α and histamine on cervical carcinoma cell lines was studied.</p> <p>Methods and results</p> <p>TNF-α alone induced slight growth inhibition and cell cycle arrest at G0/G1 phase in SiHa cells, but increased their migration. Histamine alone had no effect on cells. In addition, TNF-α and histamine in combination showed no additional effect over that by TNF-α alone, although SiHa cells were even pretreated with a protein synthesis inhibitor. Furthermore, TNF-α-sensitive ME-180 carcinoma cells were also resistant to the combination effect of TNF-α and histamine. In comparison, TNF-α or histamine alone induced growth inhibition in a non-cytolytic manner in normal keratinocytes, an effect that was further enhanced to cell cytolysis when both mediators acted in combination. Keratinocytes displayed strong TNF receptor (TNFR) I and II immunoreactivity, whereas SiHa and ME-180 cells did not. Furthermore, cervix carcinoma specimens revealed TNF-α immunoreactivity in peritumoral cells and carcinoma cells. However, the immunoreactivity of both TNFRs was less intense in carcinoma cells than that in epithelial cells in cervical specimens with non-specific inflammatory changes.</p> <p>Conclusion</p> <p>SiHa and ME-180 cells are resistant to the cytolytic effect of TNF-α and histamine whereas normal keratinocytes undergo cytolysis, possibly due to the smaller amount of TNFRs in SiHa and ME-180 cells. In the cervix carcinoma, the malignant cells may resist this endogenous cytolytic action and TNF-α could even enhance carcinoma cell migration.</p

    Co-Housing Rodents with Different Coat Colours as a Simple, Non-Invasive Means of Individual Identification:Validating Mixed-Strain Housing for C57BL/6 and DBA/2 Mice

    Get PDF
    Standard practice typically requires the marking of laboratory mice so that they can be individually identified. However, many of the common methods compromise the welfare of the individuals being marked (as well as requiring time, effort, and/or resources on the part of researchers and technicians). Mixing strains of different colour within a cage would allow them to be readily visually identifiable, negating the need for more invasive marking techniques. Here we assess the impact that mixed strain housing has on the phenotypes of female C57BL/6 (black) and DBA/2 (brown) mice, and on the variability in the data obtained from them. Mice were housed in either mixed strain or single strain pairs for 19 weeks, and their phenotypes then assessed using 23 different behavioural, morphological, haematological and physiological measures widely used in research and/or important for assessing mouse welfare. No negative effects of mixed strain housing could be found on the phenotypes of either strain, including variables relevant to welfare. Differences and similarities between the two strains were almost all as expected from previously published studies, and none were affected by whether mice were housed in mixed- or single-strain pairs. Only one significant main effect of housing type was detected: mixed strain pairs had smaller red blood cell distribution widths, a measure suggesting better health (findings that now need replicating in case they were Type 1 errors resulting from our multiplicity of tests). Furthermore, mixed strain housing did not increase the variation in data obtained from the mice: the standard errors for all variables were essentially identical between the two housing conditions. Mixed strain housing also made animals very easy to distinguish while in the home cage. Female DBA/2 and C57BL/6 mice can thus be housed in mixed strain pairs for identification purposes, with no apparent negative effects on their welfare or the data they generate. This suggests that there is much value in exploring other combinations of strains

    Tumor interactions with soluble factors and the nervous system

    Get PDF
    In the genomic era of cancer research, the development of metastases has been attributed to mutations in the tumor that enable the cells to migrate. However, gene analyses revealed that primary tumors and metastases were in some cases genetically identical and the question was raised whether metastasis formation might be an inherent feature of certain tumor cells. In contradiction to this view, the last decade of cancer research has brought to light, that tumor cell migration, similar to leukocyte and fibroblast migration, is a highly regulated process. The nervous system plays an important role in this regulation, at least in two respects: firstly, neurotransmitters are known to regulate the migratory activity of tumor cells, and secondly, nerve fibers are used as routes for perineural invasion. We also summarize here the current knowledge on the innervation of tumors. Such a process might establish a neuro-neoplastic synapse, with the close interaction of tumor cells and nerve cells supporting metastasis formation

    Real-time visualization of heterotrimeric G protein Gq activation in living cells

    Get PDF
    Contains fulltext : 97296.pdf (publisher's version ) (Open Access)BACKGROUND: Gq is a heterotrimeric G protein that plays an important role in numerous physiological processes. To delineate the molecular mechanisms and kinetics of signalling through this protein, its activation should be measurable in single living cells. Recently, fluorescence resonance energy transfer (FRET) sensors have been developed for this purpose. RESULTS: In this paper, we describe the development of an improved FRET-based Gq activity sensor that consists of a yellow fluorescent protein (YFP)-tagged Ggamma2 subunit and a Galphaq subunit with an inserted monomeric Turquoise (mTurquoise), the best cyan fluorescent protein variant currently available. This sensor enabled us to determine, for the first time, the kon (2/s) of Gq activation. In addition, we found that the guanine nucleotide exchange factor p63RhoGEF has a profound effect on the number of Gq proteins that become active upon stimulation of endogenous histamine H1 receptors. The sensor was also used to measure ligand-independent activation of the histamine H1 receptor (H1R) upon addition of a hypotonic stimulus. CONCLUSIONS: Our observations reveal that the application of a truncated mTurquoise as donor and a YFP-tagged Ggamma2 as acceptor in FRET-based Gq activity sensors substantially improves their dynamic range. This optimization enables the real-time single cell quantification of Gq signalling dynamics, the influence of accessory proteins and allows future drug screening applications by virtue of its sensitivity

    Tripping on Acid: Trans-Kingdom Perspectives on Biological Acids in Immunity and Pathogenesis

    Get PDF

    Role and regulation of MKP-1 in airway inflammation

    Get PDF
    Mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) is a protein with anti-inflammatory properties and the archetypal member of the dual-specificity phosphatases (DUSPs) family that have emerged over the past decade as playing an instrumental role in the regulation of airway inflammation. Not only does MKP-1 serve a critical role as a negative feedback effector, controlling the extent and duration of pro-inflammatory MAPK signalling in airway cells, upregulation of this endogenous phosphatase has also emerged as being one of the key cellular mechanism responsible for the beneficial actions of clinically-used respiratory medicines, including beta(2)-agonists, phosphodiesterase inhibitors and corticosteroids. Herein, we review the role and regulation of MKP-1 in the context of airway inflammation. We initially outline the structure and biochemistry of MKP-1 and summarise the multi-layered molecular mechanisms responsible for MKP-1 production more generally. We then focus in on some of the key in vitro studies in cell types relevant to airway disease that explain how MKP-1 can be regulated in airway inflammation at the transcriptional, post-translation and post-translational level. And finally, we address some of the potential challenges with MKP-1 upregulation that need to be explored further to fully exploit the potential of MKP-1 to repress airway inflammation in chronic respiratory disease

    Normal Ca<sup>2+</sup> signalling in glutathione-depleted and dithiothreitol-treated HeLa cells

    No full text
    We have investigated whether reducing agents and substances that interfere with glutathione metabolism would affect the histamine-induced rises in internal Ca2+ concentration ([Ca2+]i) in indo-1-loaded HeLa cells. Individual cells responded to 1 microM histamine with either baseline or sinusoidal Ca2+ oscillations, a single Ca2+ peak or a maintained elevation of the [Ca2+]i. Only a few cells did not respond. The sulphydryl reducing agent dithiothreitol (5 mM) did not affect these responses to histamine. A 24-h preincubation with 1 mM DL-buthionine (SR)-sulphoximine, which reduces the cellular glutathione content to less than 20% of its control value, affected neither these histamine responses, nor the [Ca2+]i rises after application of 2 ÎŒM thapsigargin. We conclude that oxidation of critical sulphydryl groups is not required for the normal response to histamine and also that glutathione plays no role in agonist-induced Ca2+ signalling in HeLa cells
    • 

    corecore