77 research outputs found

    Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts

    Get PDF
    A commercial tannin wine seed extract powder (T), a seed polyphenol extract (Sext) and virgin wine seeds wastes (Se) have been mixed with polypropylene (PP) and tested as long-term stabilizers. Their stabilizing activity has been compared with that of a synthetic antioxidant commonly used within PP (Irganox 1010). Each sample has been subject to both UV and thermal aging. The PP-based films photo-oxidation has been followed through the C=O formation over the aging time by FT-IR. The PP-based tensile specimens have been oven aged and the mechanical properties loss has been investigated monitoring the variation of the elongation at break. Melt Flow Index (MFI) measures and Different Scanning Calorimetry analysis have been conducted on thermally aged samples. At the same time, wine derived additives have been characterized in terms of total polyphenol content, FT-IR and UV/VIS spectra meanwhile catechin and gallic acid have been quantified by LC-MS. Experimental results have evidenced the ability of all the wine derived additives to withstand both to thermal and UV long-term degradation. In particular, wine seeds extracts exhibit the best results in terms of stabilization (even better than Irganox 1010) without compromising the PP mechanical, thermal, morphological and rheological properties

    Properties of graphene-related materials controlling the thermal conductivity of their polymer nanocomposites

    Get PDF
    Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites

    Dissipative Dynamics of Polymer Phononic Materials

    Get PDF
    Phononic materials are artificial composites with unprecedented abilities to control acoustic waves in solids. Their performance is mainly governed by their architecture, determining frequency ranges in which wave propagation is inhibited. However, the dynamics of phononic materials also depends on the mechanical and material properties of their constituents. In the case of viscoelastic constituents, such as most polymers, it is challenging to correctly predict the actual dynamic behavior of real phononic structures. Existing studies on this topic either lack experimental evidence or are limited to specific materials and architectures in restricted frequency ranges. A general framework is developed and employed to characterize the dynamics of polymer phononic materials with different architectures made of both thermoset and thermoplastic polymers, presenting qualitatively different viscoelastic behaviors. Through a comparison of experimental results with numerical predictions, the reliability of commonly used elastic and viscoelastic material models is evaluated in broad frequency ranges. Correlations between viscous effects and the two main band-gap formation mechanisms in phononic materials are revealed, and experimentally verified guidelines on how to correctly predict their dissipative response are proposed in a computationally efficient way. Overall, this work provides comprehensive guidelines for the extension of phononics modeling to applications involving dissipative viscoelastic materials.</p

    Efect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA Matrix Polymer Composite

    Get PDF
    Polylactic acid (PLA) formulated from corn starch has a bright potential to replace the non-renewable petroleum-based plastics. The combination of PLA and natural fbre has gained interest due to its unique performance, as reported in many researches and industries. Meanwhile, rice husk produced as the by-product of rice milling can be utilised, unless it is turned completely into waste. Therefore, in the present study, the rice husk powder (RHP) was used as a fller in the PLA, so to determine the infuence of the fller loading on the mechanical properties of the PLA composite. A coupling agent was selected for treatment from two options, i.e., maleic anhydride polypropylene (MAPP) and maleic anhydride polyethylene (MAPE), by applying the agents with various loading contents, such as 2, 4 and 6 wt%. The composite was fabricated by using the hot compression machine. Both the treated and untreated RHP–PLA composites were characterised via the tensile, fexural and impact strength tests. The increase in the RHP loading content led to the decrease in the tensile and fexural strengths. The applications of the coupling agents (MAPE and MAPP) did not improve the tensile and impact strengths, but the fexural strength was enhanced

    Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts

    No full text
    A commercial tannin wine seed extract powder (T), a seed polyphenol extract (Sext) and virgin wine seeds wastes (Se) have been mixed with polypropylene (PP) and tested as long-term stabilizers. Their stabilizing activity has been compared with that of a synthetic antioxidant commonly used within PP (Irganox 1010). Each sample has been subject to both UV and thermal aging. The PP-based films photo-oxidation has been followed through the C=O formation over the aging time by FT-IR. The PP-based tensile specimens have been oven aged and the mechanical properties loss has been investigated monitoring the variation of the elongation at break. Melt Flow Index (MFI) measures and Different Scanning Calorimetry analysis have been conducted on thermally aged samples. At the same time, wine derived additives have been characterized in terms of total polyphenol content, FT-IR and UV/VIS spectra meanwhile catechin and gallic acid have been quantified by LC-MS. Experimental results have evidenced the ability of all the wine derived additives to withstand both to thermal and UV long-term degradation. In particular, wine seeds extracts exhibit the best results in terms of stabilization (even better than Irganox 1010) without compromising the PP mechanical, thermal, morphological and rheological properties
    corecore